
Chancel: efficient multi-client isolation 
under adversarial programs

Adil Ahmad, Juhee Kim, Jaebaek Seo, 
Insik Shin, Pedro Fonseca, and Byoungyoung Lee



Data security in sensitive remote services

2

Send confidential data 
to a remote service

Guarantee that data 
cannot be collected!

NavigationDNA testing

Messaging
Machine 
learning

Intrusion 
detection



SGX partially secures remote data

Address Space

Non-
enclave

Enclave

OS

Decrypted in 
the CPU

3

DRAM

SGX CPU

Encrypted in
main memory

Software 
access

Physical
snooping



SGX secures remote data from clouds

4

Clients know that
their data is safe 

from Amazon

Signal uses SGX; Amazon 
cannot access Signal’s 

contents



SGX does not secure data from untrusted code

5

Signal stealthily 
collects client data

Hacker exploits bugs to 
collect client data

Clients are unaware 
of such theft!



Software Fault Isolation restricts untrusted code

6

Create a brick wall 
around untrusted 

code

Allow outside access 
only through a 
controlled gate

Untrusted 
code



Native Client SFI requires multiple processes

7

Cannot serve multiple 
clients in a process

Isolation



Multiple processes consume a lot of memory

8

Lack efficient and secure inter-
process memory sharing

Shared
database

Must replicate common 
data in each process



High memory use severely reduces performance

9

SGX memory is 
only 256MB

Memory usage over 256 MB 
incurs expensive page faults

1.0E+04

1.0E+05

1.0E+06

1.0E+07

16 32 64

Native SGX NaCl

Ti
m

e
 (

m
s)

1.0E+05

1.0E+06

1.0E+07

1.0E+08

16 32 64

P
ag

e
 f

au
lt

s
KV store size (MB)

Native Client (NaCl) SFI can be 16 times 
slower than native SGX!

Key-value store with 
8 clients



Chancel implements efficient multi-client SFI

10

Multiple clients are 
served within a process

Clients securely 
access shared memory



Chancel’s design

11

4. Multi-client SFI 
enforcement

2. Enclave initialization
and program loading

RO

Chancel 
runtime

Code

Shared data

RW

3. Secure client 
bootstrapping

1. Automated program
instrumentation

Offline stage Online stages

Chancel 
compiler



1. Automated program instrumentation

12

Code

Native 
program code

Chancel 
binary

Compiler reserves 
registers R14 and R15

R14 = …
R15 = …

Compiler checks writes relative to R14 
and reads relative to R14 or R15

R15

RO

RW

R14

Chancel 
compiler

Code



Chancel 
runtime

2. Enclave initialization and program loading 

13

Thanks to validation, Chancel 
even supports proprietary 

code!

Validate instrumentation 
using a binary disassembler

Code

Shared Data



3. Secure client bootstrapping

14

Clients transmit their data 
through encrypted channels

Store each client’s 
data in a different 

enclave thread

Chancel 
runtime

Code

Shared data



4. Multi-client SFI enforcement

15

R14

Update R14 and R15 to 
allow shared read but per-

thread writes!

Chancel 
runtime

Code

Shared data

RW

R15

RO

R14

Chancel 
runtime

Code

Shared data

RW

R15

RO

When runs When runs



Overhead over native SGX

16

0

5

10

15

20

25

30
P

e
rf

o
rm

an
ce

 r
e

d
u

ct
io

n
 (

%
)

Ran all applications in Nbench, a popular SGX CPU and memory benchmark

Maximum overhead 
is 24.9 %

Minimum 
overhead is 0.6 %

Despite high security guarantees, 
Chancel’s overhead is modest in most 

scenarios!



Benefit over Native Client

17

1.0E+04

1.0E+05

1.0E+06

1.0E+07

16 64 256 384

Native SGX NaCl Chancel

Ex
e

c.
 t

im
e

 (
m

s)

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

16 64 256 384

P
ag

e
 f

au
lt

s

100,000 “GET” requests to ShieldStore key-value store from 8 clients

Key-value store size (MB)Across diverse applications, Chancel 
outperforms Native Client (NaCl) by up 

to 21 times!



Summary and conclusion

18

SGX does not secure remote data 
from untrusted code

Native Client (NaCl) SFI is 
slow in multi-client enclaves

RO

Chancel 
Runtime

Code

Shared Data

RW

Chancel’s multi-client SFI is up to 
21 times faster than NaCl



Thank you!


