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Hypervisor: Manager of Virtual Machine

o Allow remote users to run guest VMs
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Hypervisor can be attacked by Malicious VM
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One of guest VMs can be malicious
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Fuzzing: Feed Random Inputs to Hypervisor
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Motivation: Too many devices, too many formats

e Hypervisor controls many virtual devices Input
o Each device has its own input formats
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Limitations of Current Hypervisor Fuzzing

#1. Generating random inputs per device
Limitation = Cannot explore deep states of the devices
#2. Relying on manual input grammars per device

Limitation = Require unacceptable manual work to specify grammar rules

Let’s fuzz hypervisor with grammar-awareness using automatic grammar inference!
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Overview of MundoFuzz

e Augment hypervisor fuzzing capability with automatic grammar inference

o Challenges in inferring hypervisor grammars
o #1. Hypervisor grammars have hidden input semantics per device
o #2.Hardware features of hypervisor introduce coverage noises

e Our approach
o Statistical and differential learning with coverage
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Challenge 1: Hidden Input Semantics

e TOO difficult to infer hidden input semantics behind the hypervisor input
ss semantics: correct semanticl 1nua
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Solution 1: Differential Learning on Input Semantics
#1. 10 address semantics

e Different 10 address types react to 10 addy
o control type = exhibits a different coverag
o data type= exhibits a same coverage
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Solution 1: Differential Learning on Input Semantics
#2. 10 order semantics

e 10 operations wouldn’t work correctly without prerequisite 10 operations
o absence of 10 operations = may distort some following coverage
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Challenge 2: Coverage Noises

e The measured input coverage includes unwanted coverage
o due to the asynchronous event handling (e.g., timer, interrupt event)
o asynchronous event introduces non-deterministic (noise) coverage
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Solution 2: Statistical Differential Coverage Measurement

e Remove noise coverage by intersecting all measured coverages
o the result only contains target coverage

/ measured coverage
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Architecture of MundoFuzz
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What MundoFuzz Found?

e MundoFuzz found new 40 bugs in QEMU and Bhyve

o 23 bugsin QEMU
o 17 bugs in Bhyve

o 9 of these were acknowledged as CVEs

Hypervisor

Bug Types

Numbers

QEMU

Use-after-free
Heap Overflow
Segmentation Fault
Infinite Loop

Stack Overflow
Assertion

Bhyve

Segmentation Fault
Floating Point Exception
Assertion
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Our result

e Overall coverage: MundoFuzz outperforms state-of-art hypervisor fuzzer
o HyperCube: +4.91%
o Nyx: +6.60%

e MundoFuzz shows higher coverage than Nyx+ (with manual grammar rule)
o for USB-XHCI device (48 hours)
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Conclusion

e Proposed MundoFuzz, a hypervisor fuzzing technique
o statistically removes noise coverage in raw coverage

o automatically learns the grammar using two hidden semantics

e MundoFuzz discovered 40 new bugs (including 9 CVEs)

e MundoFuzz presented better coverage, compared to state of the arts.
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Thank you!

Q&A

Contact Cheolwoo Myung
Ph.D. Student at Seoul National University (SNU)
cwmyung@snu.ac.kr



mailto:cwmyung@snu.ac.kr

Our approach: Infer the grammar with semantic constraints

e MundoFuzz infers the semantic constraints by the input coverage
o Register types
m to synthesize the IO operations correctly
o Order dependency
m to place the 10 operations in correct order
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Idea: Inferring the grammar through input coverage

e Hypervisor behaves differently depending on the input grammar correctness

Different!!
Hypervisor Operation | store Data in Sector 0 /mg dl\
succeeaq:

Correct Input
Find Sector O
S ) o
Command ] Write Data coverage
If the order is changed? Where to Store? *
Incorrect Input ﬂg failed]
Py Write Data 8 alled:
‘ v ‘ ‘
@ Find Sector 0 _ coverage )
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Let’s fuzz the hypervisor with grammar-awareness!

Synthesizes correct input semantics with correct order

6 =

Grammar

Hypervisor Input

Enable Device();

Find Sector();

Write Data();

Hypervisor Operation

__—

Enable Device
v
Find Sector
v

Write Datay
— ~—

l Crash!!
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Our approach: Inferring the grammar through coverage

e Hypervisor behaves differently if the input is given grammatically correct or

incorrect

Correct Input

D:>

Hypervisor Operation

Store Data in Sector O
S~

ng succeed!

CE’> Find Sector 0 2\
v
— Write Data @

What if change the order?

@Eﬂw

coverage
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Our approach: Inferring the grammar through coverage

e Hypervisor behaves differently if the input is given grammatically correct or
incorrect

Hypervisor Operation Where to Store?

Incorrect Input

Write Dat :
D ‘ "e* gig ‘ ,8 failed!

Find Sector 0
coverage
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Our approach: Inferring the grammar through coverage

e Hypervisor behaves differently if the input is given grammatically correct or

incorrect
[Example]Grammarlnfo """""""""" Different!!
: laceadr 0 | )
|Cooresttip , ng succeed!
Find Sector();
|
D <: : coverage
L N is dependent on 2
Grammar Hg failed!
Write Data();
. coverage
S =,




Idea 1: Noise coverage would appear in a different way

e Measure the coverage multiple times for same input
e Remove Noise coverage by intersecting them all

/ measured coverage
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Problem 2: Uncertain Input Semantics

e Input semantics are presented in a small sequence of 10 interface inputs
o hard to understand by looking at individual |10 interface input

Hypervisor Ingy;,——""' MMIO[bar+0] «— 0x0
MMIO[bar+4] < 0x4
|j MMIO[bar+8] < 0xa0
DMA[0xa0] < Oxbeef
DMA[0xa0] < Oxcafe
Hypervisor Operation - | MMIO[bar+4] < 0x8

_/\
Find Sector 0 x T
¥ Write Value at 10 address
Write Data using 10 interface




Problem 2: Semantic meaning in Hypervisor Input

e Hypervisor input is presented in a sequence of 10 interface inputs
o hard to understand its semantic meaning by looking at individual 10 interface input

Input MMIO[bar+0] « 0x0 Input Semantic
MMIO[bar+4] < Ox4 :
D MMIO[bar+8] < 0xa0 i Find S:ctor 0
. | DMA[0xa0] — Oxbeef | = T——
MMIO[bar+4] < 0x4

—

Write Value at 10 address
using 10 interface
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Idea 2: Grammar Inference with Two Semantic Constraints

e The Grammar can be reconstructed by two semantic constraints

1) The register types of 10 address

Register Types

Control register (bar+4)
: invoke the desired function

Data register (bar+0)
: transfers the data parameter

Hypervisor Operation

Find Sector O

MMIO[bar+0] < 0x0
MMIO[bar+4] <

-

Find Sector O

Invoke the “Find Sector” func.
with the parameter (“0”)
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Example: too many devices, too many formats

Random fuzzing cannot develop the hypervisor input regarding the input format
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Example: too many devices, too many formats
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Example: too many devices, too many formats
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Challenge 2: Uncertain grammar information

e Hypervisor input is presented in a sequence of 10 interface inputs
o hard to understand its grammar by looking at individual IO interface input

Input
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Problem 2: Uncertain Input Semantics

e Hypervisor input is presented in a sequence of 10 interface inputs
o hard to infer its semantic meaning by looking at individual 10 interface input

Input
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Idea 2: Subdivides 10 Task using Completion Signal

Input Semantics comprise a small sequence of IO interface inputs
o 10 Task: serves as high-level semantic unit
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With 10 Task, still we have no grammar rules

O

Problem 3: Uncertain Grammar Rules

hard to infer its grammar by looking at individual 10 interface input

Input
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Challenge 2: Uncertain grammar information

Input semantics are presented in a sequence of 10 interface inputs
hard to infer its grammar by looking at individual 10 interface input
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Idea 2: Grammar Inference with Constraints
#1. Types of register

o |Ointerface input serves its own semantic meaning depending on the types of
register

Invoke the “Write Data” func. (0x8)

Register Types )
with the parameter (Oxcafe)

Control register (bar+4)

: invoke the desired function Write Data
Data register (bar+0) |:> MMIO[bar+0] < Oxcafe
: transfers the data parameter MMIO[bar+4] < 0x8
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Idea 2: Grammar Inference with Two Constraints
#2. Order dependency

e Each Input semantic functions correctly depending on order dependency

Find Sector 0

-

Werite Data

|




Idea 2: Grammar Inference with Two Constraints

Grammar can be reconstructed by two constraints

2) order dependency

Find Sector O L\Nritei‘
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Idea 2: Grammar Inference with Two Constraints
#1. Inferring Types of Register

o Infer the register type by giving correct and incorrect input

o Each register type
o due to its operational characteristic

e Data register has same coverage
o two inputs only transfer a data to device

e Control register has different coverage
o two inputs invoke different functions
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Problem 2: Uncertain Input Semantics

e Hypervisor input is presented in a sequence of 10 interface inputs
o hard to infer its semantic meaning by looking at individual 10 interface input

Input
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Solution 2: Subdivides the hypervisor input into 10 Request

Input semantics comprise a small sequence of low-level 10 operation
I0 Request: serves as high-level semantic task
hypervisor returns completion signal after the 10 request accepts

o

o

exec

!

Input

MMIO[bar+0] < 0x0
MMIO[bar+4] < 0x4

Request!

Complete!

-

Hypervisor )

Find Sector 0

-

pRFogeessing...

J
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Our approach: Inferring the grammar with semantic constraints

e Giving correct/incorrect 10 requests based on two constraints

o Order dependency
m gives the information on how to place the 10 request in a correct order

10 Req. #1 Hypervisor Operation
% Find Sector Find Sector
— Write Data() is
10 Req. #2 :> dependent on Find Sector()
Write Data Write Data
\/
L —




Our approach: Inferring the grammar with semantic constraints

#1. Register Types

Inspect the input coverage by giving correct/incorrect values at 10 address
o control register = exhibits a different coverage
o data register = exhibits a same coverage

Correct 10 Req.

MMIO[bar+0] < 0x0
MMIO[bar+4] < 0x4

-
Incorrect 10 Req.

MMIO[bar+0] « Oxff

MMIO[bar+4] < 0x4

-

=

Find Sector 0

-

-

~
> 0=
Hypervisor Find Sector 255
> 0=

/

Samel!

/Coverage\
HEEENEEEN

—
—

- J
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Example: too many devices, too many formats
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Random cannot develop the hypervisor input regarding the input format
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Challenge 2: Uncertain Input Semantics

e The hypervisor input is presented in a sequence of low-level 10 operations
o hard to infer its semantic meaning by looking at individual 10 interface input

Input

SCSI
Command

MMIO[bar+0] < 0xO0

MMIO[bar+4] < 0x4
MMIO[bar+0] < Oxcafe

MMIO[bar+4] < 0x8
N\

Hypervisor Operation

Find Sector 0

=

Write Value at 10 address

using 10 interface

v

Werite Data
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Solution 2: Capture the Semantic Unit with Completion Signal

e Input semantics comprise a small sequence of low-level 10 operation
o 10 Request: serves as high-level semantic task
o hypervisor send completion signal after the IO request accepts

Input

exec

Find Sector(...)

MMIO[bar+0] < 0x0 [:>
MMIO[bar+4] < 0x4

MMIO[bar+0] < Oxcafe
MMIO[bar+4] < 0x8 :>

Write Data(...)




Infer the 10 request with semantic constraints
#1. Register Types

Inspect the input coverage by giving correct/incorrect values at 10 address
o control register = exhibits a different coverage
o data register = exhibits a same coverage

Correct 10 Req.

MMIO[bar+0] < 0x0
MMIO[bar+4] < 0x4

-
Incorrect 10 Req.

MMIO[bar+0] « Oxff

MMIO[bar+4] < 0x4

.
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InvdliadSedSebtor”
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-

~

Hypervisor
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Invohd S@thmer Fammc”

J

> O =

DiSfaneit!!
4 Coverage )
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Infer the 10 request with semantic constraints
#2. Order Dependency

Inspect the input coverage by giving 10 requests in correct/incorrect order
o absence of one 10 req. = may distort the coverage of others

Correct 10 Req.

Find Sector O
Y

Werite Data

.

Incorrect 10 Req.

_______________________

Werite Data

-

=

Write Data
in Sector 0
=2 0=
Hypervisor Where to Write?
- /

Different!!

/Coverage\
HEEENEEEN

03

- J
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)

Example: too many devices, too many formats

Hypervisor accepts different inputs per device

Random inputs cannot trigger interesting hypervisor behaviors
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Let’s fuzz the hypervisor with grammar-awareness!

Grammar-aware fuzzing can explore deep state of the hypervisor!

&
=}
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Challenge 2: Hidden Input Semantics

e The hypervisor input is presented in a sequence of low-level 10 operations
o difficult to infer hidden semantics behind individual IO operations

Input

SCSI
Command

MMIO[bar+0] < 0xO0
MMIO[bar+4] < 0x4
MMIO[bar+0] < Oxcafe

MMIO[bar+4] < 0x8
N\

Hypervisor Operation

Find Sector 0

=

Write Value at 10 address

\{ using 10 interface

v

Werite Data
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Challenge 2: Hidden Input Semantics

e Two hidden semantics

®) Re

gister types (of low-level 10 operation)

&)

f . il It Ay de A e e A J \ . PR S
give a dedicated semantic meaning to O operation

o Order dependency (between low-level 10 operations)

give a necessary order to correctly perform |0 operation

“Write Data” 10 operations need “Find Sector” 10 operations

Hypervisor Operation

MMIO[bar+0] < 0Ox0 Find Sector
MMIO[bar+4] < 0x4 :> 7
MMIO[bar+0] < Oxcafe .
MMIO[bar+4] < 0x8 UDIE ELE

\_/—
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MundoFuzz overview

e Grammar-aware fuzzing with automatic grammar inference

o Idea: infer the hypervisor input grammar with input coverage
o #1. measure a input coverage by manipulating the input trace
o #2. analyze the difference input coverage to make grammar

device
input trace

@_»

manipulation

_.D_.[

grammar
Hypervisor ] ,
1=
v !

coverage

(NENNEEEN —>{ analysis ]
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10 orde

“Challenge 2: Hiddendnput.Semantiss,

Register types (of low-level 10 operation)

give a dedicated semantic meaning to 10 operation

“Write Data” 10 operations need “Find Sector” 10 operations

Hypervisor Operation

MMIO[bar+0] < 0Ox0 Find Sector
MMIO[bar+4] < 0x4 :> 7
MMIO[bar+0] < Oxcafe .
MMIO[bar+4] < 0x8 UDIE ELE

\_/—
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Challenge 2: Hidden Input Semantics

e Hidden input semantics
o 10 address semantics: correct semantic command should be given

Input

SCSI
Command

\
AY
AY
AY
AY
AY
AY
AY
AY
\
\
\

MMIO[bar+0] < 0x0
MMIO[bar+4]| < 0x4
MMIO[bar+0] < Oxcafe
MMIO[bar+4] < 0x8

Invoke the “Write Data” func. (0x8)
with the parameter (Oxcafe)

Control Type(bar+4)
: invoke the desired function

-

Data Type (bar+0)
: transfers the data parameter
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Challenge 2: Hidden Input Semantics

e Hidden input semantics
55 semantics: correct semantic commana shoula be given
o 10 order semantics: correct semantic order should be given

O |0 acdldre

Input

SCSI
Command

MMIO[bar+0] < 0x0
MMIO[bar+4] < 0x4
MMIO[bar+0] < Oxcafe
MMIO([bar+4] < 0x8

AY
AY
AY
\
\
AY
AY
\
\
AY
\
\

=

Hypervisor Operation

Find Sector 0

v

Werite Data
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MundoFuzz overview

o Find hypervisor bugs through automatic grammar inference

o Idea: Infer the grammar through hypervisor input coverage

o #1. Measure the coverage by hypervisor input

o #2. Infer the grammar by analyzing the input coverage

/

input

-

Y4

—> [ Hypervisor ]

\

coverage
(HEEEEEEN

grammar

|

=

T

analysis

~
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MundoFuzz overview

Augment hypervisor fuzzing capability with automatic grammar inference

Idea: Infer the grammar through hypervisor input coverage
o #1. Measure the coverage by hypervisor input

o #2. Infer the grammar by analyzing the input coverage
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How to teach hypervisor grammar awareness?

We found two challenges in inferring hypervisor input grammars
o challenge #1. Coverage noises
: make different input coverage even same hypervisor input is given

o challenge #2. Hidden Input Semantics
: hard to infer the hidden semantics behind the hypervisor input

Our approach: Statistical and differential learning with coverage
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Challenge 2: Hidden Input Semantics

e Too difficult to infer input semantics behind the hypervisor input
o hypervisor input is presented in a sequence of 10 operations
o difficult to infer hidden semantics behind individual 10 operations

Input

SCSI
Command

MMIO[bar+0] < 0xO0
MMIO[bar+4] < 0x4
MMIO[bar+0] < Oxcafe

MMIO[bar+4] < 0x8
N\

=

Hypervisor Operation

Find Sector 0

Write Value at 10 address

\{ using 10 interface

v

Werite Data
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Challenge 1: Hidden Input Semantics

Too difficult to infer input semantics behind the hypervisor input
o hypervisor input is presented in a sequence of 10 operations

Input

SCSI
Command

MMIO[bar+0] < 0xO0
MMIO[bar+4] < 0x4
MMIO[bar+0] < Oxcafe

MMIO[bar+4] < 0x8
N\

=

Hypervisor Operation

Find Sector 0

Write Value at 10 address

\{ using 10 interface

v

Werite Data

61



