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Hypervisor: Manager of Virtual Machine

Hypervisor

VM

2 / 16

● Allow remote users to run guest VMs

VM



Hypervisor can be attacked by Malicious VM
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● One of guest VMs can be malicious

VM VM

Hypervisor



Fuzzing: Feed Random Inputs to Hypervisor

Hypervisor

VM

PIO MMIO

DMA etc.

Combination of Low-level IO operation
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Fuzzing 
Input

Crash!!
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Motivation: Too many devices, too many formats

● Hypervisor controls many virtual devices
○ Each device has its own input formats

Hypervisor

virtual devices

SCSI NIC

DisplayNVMe

Sound SATA

Timer

APIC

USB

Input

…



#1. Generating random inputs per device

#2. Relying on manual input grammars per device 
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Limitations of Current Hypervisor Fuzzing

Limitation ⇒ Cannot explore deep states of the devices

Limitation ⇒ Require unacceptable manual work to specify grammar rules

Let’s fuzz hypervisor with grammar-awareness using automatic grammar inference!
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● Augment hypervisor fuzzing capability with automatic grammar inference

● Challenges in inferring hypervisor grammars
○ #1. Hypervisor grammars have hidden input semantics per device
○ #2. Hardware features of hypervisor introduce coverage noises

● Our approach
○ Statistical and differential learning with coverage

Overview of MundoFuzz
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● Too difficult to infer hidden input semantics behind the hypervisor input

Challenge 1: Hidden Input Semantics

○ IO address semantics: correct semantic command should be given ○ IO address semantics: correct semantic command should be given
○ IO order semantics: correct semantic order should be given

Invoke the “Find Sector” func. (0x4)  
with the parameter (0x0)

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Hypervisor Operation

Find Sector 0

Write Data

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Control Type (bar+4)
: invoke the desired function

Data Type (bar+0)
: transfers the data parameter

Invoke the “Write Data” func. (0x8)  
with the parameter (0xcafe)

Hypervisor Operation

Find Sector 0

Write Data

Hypervisor Operation

Find Sector 0

Write Data

“Find Sector” should be performed before “Write Data” 

Hypervisor Operation

Find Sector 0

Write Data

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Hypervisor Operation

Find Sector 0

Write Data

Example: SCSI command input
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Solution 1: Differential Learning on Input Semantics
#1. IO address semantics

● Different IO address types react to IO address values differently

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Correct input

Hypervisor

Coverage Invoke “Find Sector”

Invoke “Other Func”

Different!!

Incorrect input
MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0xfb

○ control type ⇒ exhibits a different coverage

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Correct input

Incorrect input
MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0xfb

○ data type⇒  exhibits a same coverage

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Correct input

Incorrect input
MMIO[bar+0] ← 0xff
MMIO[bar+4] ← 0x4

Hypervisor

Find Sector 0

Find Sector 255

Coverage

Same!!

Control Type!Data Type!

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Correct input

Incorrect input
MMIO[bar+0] ← 0xff
MMIO[bar+4] ← 0x4
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Solution 1: Differential Learning on Input Semantics
#2. IO order semantics

● IO operations wouldn’t work correctly without prerequisite IO operations
○ absence of IO operations ⇒ may distort some following coverage

Hypervisor

Coverage

Different!!Correct input
MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Incorrect input
MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Skip

input

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Dependent!

MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8
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Challenge 2: Coverage Noises

● The measured input coverage includes unwanted coverage
○ due to the asynchronous event handling (e.g., timer, interrupt event)
○ asynchronous event introduces non-deterministic (noise) coverage

expected coverage

# of execution : 1

Cov. #1

measured coverage

Input

SCSI
Command

Hypervisor Operation

Write Data

Find Sector

Cov. #2

# of execution : 2

Cov. #1

measured coverage

# of execution : N

Cov. #1

measured coverage

Cov. #2

Cov. #N

...

Write Data

Find Sector

Interrupt event

Write Data

Find Sector

Timer event

Write Data

Find Sector

APIC event

: target: target

: noise

Example: SCSI command input
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Solution 2: Statistical Differential Coverage Measurement

coverage #N

...

coverage #2

coverage #1

measured coverage

● Remove noise coverage by intersecting all measured coverages

: target

: noise

● Target coverage (    ) 
○ is always captured for all execution

● Noise coverage (    ) 
○ is captured differently for each 

execution

coverage #N

...

coverage #2

coverage #1

measured coverage

coverage #N

...

coverage #2

coverage #1

measured coverage

∩
Intersection

target coverage

○ the result only contains target coverage
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Architecture of MundoFuzz

hypervisor
input trace

correct

Hypervisor

incorrect

MundoFuzzOS

statistical
noise filter

Cov. w/ noise

Cov. w/o noise

analysis

IO addr. IO order

grammar

MundoFuzzOS

MundoFuzz-Fuzzer

Hypervisor
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What MundoFuzz Found?

Hypervisor Bug Types Numbers

QEMU

Bhyve

Use-after-free 3
Heap Overflow 2
Segmentation Fault 3
Infinite Loop 3
Stack Overflow 1
Assertion 11

Segmentation Fault 4
Floating Point Exception 1
Assertion 12

● MundoFuzz found new 40 bugs in QEMU and Bhyve
○ 23 bugs in QEMU
○ 17 bugs in Bhyve
○ 9 of these were acknowledged as CVEs
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Our result

● Overall coverage: MundoFuzz outperforms state-of-art hypervisor fuzzer
○ HyperCube: +4.91%
○ Nyx: +6.60%

● MundoFuzz shows higher coverage than Nyx+ (with manual grammar rule)
○ for USB-XHCI device (48 hours)
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Conclusion

● Proposed MundoFuzz, a hypervisor fuzzing technique
○ statistically removes noise coverage in raw coverage

○ automatically learns the grammar using two hidden semantics

● MundoFuzz discovered 40 new bugs (including 9 CVEs)

● MundoFuzz presented better coverage, compared to state of the arts. 
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● MundoFuzz infers the semantic constraints by the input coverage
○ Register types

■ to synthesize the IO operations correctly
○ Order dependency

■ to place the IO operations in correct order

Our approach: Infer the grammar with semantic constraints
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Idea: Inferring the grammar through input coverage

● Hypervisor behaves differently depending on the input grammar correctness

Correct Input

SCSI
Command

Hypervisor Operation

Write Data

Find Sector 0

Store Data in Sector 0

Where to Store?

Find Sector 0

Write Data
Incorrect Input

SCSI
Command

succeed!

coverage

failed!

coverage

If the order is changed?

Different!!
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Let’s fuzz the hypervisor with grammar-awareness!

● Synthesizes correct input semantics with correct order 

Grammar

Hypervisor Input

Enable Device();

Find Sector();

Write Data();

Hypervisor Operation

Write Data

Enable Device

Find Sector

Crash!!
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Our approach: Inferring the grammar through coverage

● Hypervisor behaves differently if the input is given grammatically correct or 
incorrect

Correct Input
Hypervisor Operation

Write Data

Find Sector 0

Store Data in Sector 0

Hypervisor Operation

Find Sector 0

Write Data

Where to Store?
Incorrect Input

What if change the order?

succeed!

failed!

coverage

coverage



22

Our approach: Inferring the grammar through coverage

● Hypervisor behaves differently if the input is given grammatically correct or 
incorrect

Hypervisor Operation

Find Sector 0

Write Data

Where to Store?
Incorrect Input

failed!

coverage
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Our approach: Inferring the grammar through coverage

● Hypervisor behaves differently if the input is given grammatically correct or 
incorrect

Correct Input
Hypervisor Operation

Write Data

Find Sector 0

Store Data in Sector 0Where to Store?Hypervisor Operation

Find Sector 0

Write Data
Incorrect Input succeed!

coverage

failed!

coverage

What if change the order?

Different!!

Store Data in Sector 0Where to Store?

Grammar

Find Sector();

Write Data();

Grammar Info.

is dependent on

[Example]
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Idea 1: Noise coverage would appear in a different way

● Measure the coverage multiple times for same input

coverage #N

...

coverage #2

coverage #1

measured coverage

expected coverage

● Remove Noise coverage by intersecting them all

∩
Intersection

: target

: noise

: target

: noise
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Problem 2: Uncertain Input Semantics

● Input semantics are presented in a small sequence of IO interface inputs
○ hard to understand by looking at individual IO interface input

Hypervisor Input

Hypervisor Operation

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+8] ← 0xa0
DMA[0xa0] ← 0xbeef
DMA[0xa0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Value at IO address 
using IO interface

Find Sector 0

Write Data
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Problem 2: Semantic meaning in Hypervisor Input

● Hypervisor input is presented in a sequence of IO interface inputs

Input MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+8] ← 0xa0
DMA[0xa0] ← 0xbeef
DMA[0xa0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input Semantic

Find Sector 0

Write Data

??

○ hard to understand its semantic meaning by looking at individual IO interface input

Input MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+8] ← 0xa0
DMA[0xa0] ← 0xbeef
MMIO[bar+4] ← 0x4

Write Value at IO address 
using IO interface
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Idea 2: Grammar Inference with Two Semantic Constraints

● The Grammar can be reconstructed by two semantic constraints

2) order dependency1) The register types of IO address

Register Types

Control register
: invoke the desired function

Data register
: transfers the data parameter

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Find Sector 0
 (bar+4)

 (bar+0)

Hypervisor Operation

Find Sector 0

Invoke the “Find Sector” func. 
with the parameter (“0”)
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Example: too many devices, too many formats 

● Need different hypervisor inputs

IO Task

Write Data

Storage A Input Storage B Input

even if these behave same functionality ● Need different hypervisor inputs

IO Task

Write Data

Storage A Input Storage B Input

even if these behave same functionality 

Random fuzzing cannot develop the hypervisor input regarding the input format
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Example: too many devices, too many formats 

● Need different hypervisor inputs to control each devices

Hypervisor

Hypervisor Input

SCSI

NIC NIC

USB USB

SCSI

Virtual Device
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Example: too many devices, too many formats 

● Need different input formats to fuzz each device in hypervisor

Fuzzing Input

SCSI USB

Hypervisor

SCSI USB
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Challenge 2: Uncertain grammar information

● Hypervisor input is presented in a sequence of IO interface inputs
○ hard to understand its grammar by looking at individual IO interface input

InputInput MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

InputInput MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Value at IO address 
using IO interface

Hypervisor Operation

Find Sector 0
??

Write Data
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Problem 2: Uncertain Input Semantics

● Hypervisor input is presented in a sequence of IO interface inputs
○ hard to infer its semantic meaning by looking at individual IO interface input

Hypervisor Operation

??
Write Data

Input MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

Write Value at IO address 
using IO interface
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Idea 2: Subdivides IO Task using Completion Signal

● Input Semantics comprise a small sequence of IO interface inputs
○ IO Task: serves as high-level semantic unit
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Problem 3: Uncertain Grammar Rules

● With IO Task, still we have no grammar rules 
○ hard to infer its grammar by looking at individual IO interface input

Hypervisor Operation

??
Write Data

Input MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

Write Value at IO address 
using IO interface
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Challenge 2: Uncertain grammar information

● Input semantics are presented in a sequence of IO interface inputs
○ hard to infer its grammar by looking at individual IO interface input

InputInput MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

InputInput MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Value at IO address 
using IO interface

Hypervisor Operation

Find Sector 0
??

Write Data
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● IO interface input serves its own semantic meaning depending on the types of 
register

Idea 2: Grammar Inference with Constraints

MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Data

Register Types

Control register (bar+4)
: invoke the desired function

Data register (bar+0)
: transfers the data parameter

Invoke the “Write Data” func. (0x8)  
with the parameter (0xcafe)

#1. Types of register
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● Each Input semantic functions correctly depending on order dependency

Idea 2: Grammar Inference with Two Constraints
#2. Order dependency

Find Sector 0

Write Data
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Idea 2: Grammar Inference with Two Constraints

● Grammar can be reconstructed by two constraints

2) order dependency1) The register types of IO address

Find Sector 0 Write Data
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● Infer the register type by giving correct and incorrect input
● Each register type

○ due to its operational characteristic

Idea 2: Grammar Inference with Two Constraints
#1. Inferring Types of Register

● Data register has same coverage
○ two inputs only transfer a data to device

● Control register has different coverage
○ two inputs invoke different functions
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Problem 2: Uncertain Input Semantics

● Hypervisor input is presented in a sequence of IO interface inputs
○ hard to infer its semantic meaning by looking at individual IO interface input

Hypervisor Operation

??
Write Data

Input MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

Write Value at IO address 
using IO interface



MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

ex
ec
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Solution 2: Subdivides the hypervisor input into IO Request

● Input semantics comprise a small sequence of low-level IO operation
○ IO Request: serves as high-level semantic task
○ hypervisor returns completion signal after the IO request accepts

Input

Request!

Complete!

Hypervisor

Find Sector 0
progressing…done

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

ex
ec
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● Giving correct/incorrect IO requests based on two constraints
○ Register types (of low-level IO operation)

■ gives the information on how to synthesize the IO request correctly
○ Order dependency

■ gives the information on how to place the IO request in a correct order

Our approach: Inferring the grammar with semantic constraints

Find Sector

IO Req. #1

Write Data

IO Req. #2

ex
ec

Hypervisor Operation

Find Sector

Write Data

Write Data() is
dependent on Find Sector()
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Our approach: Inferring the grammar with semantic constraints
#1. Register Types

● Inspect the input coverage by giving correct/incorrect values at IO address
○ control register ⇒ exhibits a different coverage
○ data register ⇒  exhibits a same coverage

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Correct IO Req.

Hypervisor

CoverageFind Sector 0

Find Sector 255Incorrect IO Req.
MMIO[bar+0] ← 0xff
MMIO[bar+4] ← 0x4

Same!!
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Example: too many devices, too many formats 

● Need different input formats to fuzz each device in hypervisor

Fuzzing Input

SCSI
Command

USB
Command

Hypervisor

SCSI USB

● Need different input formats to fuzz each device in hypervisor

Fuzzing Input

SCSI
Command

USB
Command

Hypervisor

SCSI USB

Random cannot develop the hypervisor input regarding the input format
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Challenge 2: Uncertain Input Semantics

● The hypervisor input is presented in a sequence of low-level IO operations
○ hard to infer its semantic meaning by looking at individual IO interface input

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Value at IO address 
using IO interface

Hypervisor Operation

Find Sector 0
??

Write Data



MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

ex
ec
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Solution 2: Capture the Semantic Unit with Completion Signal

● Input semantics comprise a small sequence of low-level IO operation

Input

Request!

Complete!

Hypervisor

Find Sector 0Write Data

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

ex
ec

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

ex
ec

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

ex
ec

progressing…done

Find Sector(...)

Write Data(...)

○ hypervisor send completion signal after the IO request accepts
○ IO Request: serves as high-level semantic task
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Infer the IO request with semantic constraints
#1. Register Types

● Inspect the input coverage by giving correct/incorrect values at IO address

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Correct IO Req.

Hypervisor

CoverageInvoke “Find Sector”

Invoke “Other Func”

Different!!

Incorrect IO Req.
MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0xfb

○ control register ⇒ exhibits a different coverage
○ data register ⇒  exhibits a same coverage
○ control register ⇒ exhibits a different coverage
○ data register ⇒  exhibits a same coverage

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Correct IO Req.

Incorrect IO Req.
MMIO[bar+0] ← 0xff
MMIO[bar+4] ← 0x4

Hypervisor

Find Sector 0

Find Sector 255

Coverage

Same!!
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Infer the IO request with semantic constraints
#2. Order Dependency

● Inspect the input coverage by giving IO requests in correct/incorrect order
○ absence of one IO req. ⇒ may distort the coverage of others

Hypervisor

Write Data 
in Sector 0

Where to Write?

Coverage

Correct IO Req.

Write Data

Find Sector 0

Incorrect IO Req.

Write Data

Find Sector 0

Different!!
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Example: too many devices, too many formats 

● Hypervisor accepts different inputs per device

Fuzzing Input

SCSI
Command

USB
Command

Hypervisor

SCSI USB

● Hypervisor accepts different inputs per device

Fuzzing Input

SCSI
Command

USB
Command

Hypervisor

SCSI USB

Random inputs cannot trigger interesting hypervisor behaviors
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Let’s fuzz the hypervisor with grammar-awareness!

● Synthesizes correct input semantics with correct order 

Grammar

Fuzzing Input

Enable Device();

Find Sector();

Write Data();

Hypervisor Operation

Write Data

Enable Device

Find Sector

Crash!!

● Synthesizes correct input semantics with correct order 

Grammar

Fuzzing Input

Enable Device();

Find Sector();

Write Data();

Hypervisor Operation

Write Data

Enable Device

Find Sector

Crash!!

Grammar-aware fuzzing can explore deep state of the hypervisor!
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Challenge 2: Hidden Input Semantics

● The hypervisor input is presented in a sequence of low-level IO operations
○ difficult to infer hidden semantics behind individual IO operations

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Value at IO address 
using IO interface

Hypervisor Operation

Find Sector 0
??

Write Data



52

● Two hidden semantics

Challenge 2: Hidden Input Semantics

MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Data
Control register (bar+4)
: invoke the desired function

Data register (bar+0)
: transfers the data parameter

Invoke the “Write Data” func. (0x8)  
with the parameter (0xcafe)

○ Register types (of low-level IO operation)

■ give a dedicated semantic meaning to IO operation
○ Order dependency (between low-level IO operations)

■ give a necessary order to correctly perform IO operation

“Write Data” IO operations need “Find Sector” IO operations

○ Register types (of low-level IO operation)

■ give a dedicated semantic meaning to IO operation
○ Order dependency (between low-level IO operations)

■ give a necessary order to correctly perform IO operation

Hypervisor Operation

Write Data

Find SectorMMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Data

Find SectorMMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Data

Find Sector
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MundoFuzz overview

● Grammar-aware fuzzing with automatic grammar inference

● Idea: infer the hypervisor input grammar with input coverage

device
input trace

Hypervisor

VM

manipulation

coverage
analysis

grammar

○ #1. measure a input coverage by manipulating the input trace
○ #2. analyze the difference input coverage to make grammar
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● Hypervisor input has its own semantic meaning 

Challenge 2: Hidden Input Semantics

MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Data
Control register (bar+4)
: invoke the desired function

Data register (bar+0)
: transfers the data parameter

Invoke the “Write Data” func. (0x8)  
with the parameter (0xcafe)

○ Register types (of low-level IO operation)

■ give a dedicated semantic meaning to IO operation
○ Order dependency (between low-level IO operations)

■ give a necessary order to correctly perform IO operation

“Write Data” IO operations need “Find Sector” IO operations

○ IO address semantics
■ correct semantic should be given

○ IO order semantics
■ give a necessary order to correctly perform IO operation

Hypervisor Operation

Write Data

Find SectorMMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Data

Find SectorMMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Data

Find Sector
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● Hidden input semantics

Challenge 2: Hidden Input Semantics

Control Type(bar+4)
: invoke the desired function

Data Type (bar+0)
: transfers the data parameter

○ IO address semantics: correct semantic command should be given 

“Find Sector” should be performed before “Write Data” 

○ IO address semantics
■ give a dedicated semantic meaning to IO operation

○ IO order semantics
■ give a necessary order to correctly perform IO operation

Hypervisor Operation

Write Data

Find SectorMMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Data

Find SectorMMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Data

Find Sector

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

Invoke the “Write Data” func. (0x8)  
with the parameter (0xcafe)
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● Hidden input semantics

Challenge 2: Hidden Input Semantics

○ IO address semantics: correct semantic command should be given ○ IO address semantics: correct semantic command should be given
○ IO order semantics: correct semantic order should be given

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Hypervisor Operation

Find Sector 0

Write Data

Control Type(bar+4)
: invoke the desired function

Data Type (bar+0)
: transfers the data parameter

“Find Sector” should be performed before “Write Data” 

Hypervisor Operation

Write Data

Find SectorMMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Data

Find SectorMMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Data

Find Sector

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

Invoke the “Write Data” func. (0x8)  
with the parameter (0xcafe)
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MundoFuzz overview

● Find hypervisor bugs through automatic grammar inference

● Idea: Infer the grammar through hypervisor input coverage
○ #1. Measure the coverage by hypervisor input

○ #2. Infer the grammar by analyzing the input coverage

input

Hypervisor
VM

statistical
noise filter

Cov. w/ noise

Cov. w/o noise

analysis

Reg. Type Order Dep.

grammar

analysis

grammar

coverage
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MundoFuzz overview

● Augment hypervisor fuzzing capability with automatic grammar inference

● Idea: Infer the grammar through hypervisor input coverage
○ #1. Measure the coverage by hypervisor input

○ #2. Infer the grammar by analyzing the input coverage

statistical
noise filter

Cov. w/ noise

Cov. w/o noise

analysis

Reg. Type Order Dep.

grammar
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● We found two challenges in inferring hypervisor input grammars
○ challenge #1. Coverage noises

: make different input coverage even same hypervisor input is given

○ challenge #2. Hidden Input Semantics
: hard to infer the hidden semantics behind the hypervisor input

● Our approach: Statistical and differential learning with coverage

How to teach hypervisor grammar awareness?
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Challenge 2: Hidden Input Semantics

● Too difficult to infer input semantics behind the hypervisor input
○ hypervisor input is presented in a sequence of IO operations
○ difficult to infer hidden semantics behind individual IO operations

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Value at IO address 
using IO interface

Hypervisor Operation

Find Sector 0
??

Write Data
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Challenge 1: Hidden Input Semantics

● Too difficult to infer input semantics behind the hypervisor input
○ hypervisor input is presented in a sequence of IO operations

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Value at IO address 
using IO interface

Hypervisor Operation

Find Sector 0
??

Write Data


