
MundoFuzz: Hypervisor Fuzzing with Statistical
Coverage Testing and Grammar Inference

Cheolwoo Myung , Gwangmu Lee , and Byoungyoung Lee

Seoul National University , EPFL

† †

†

‡

‡

Hypervisor: Manager of Virtual Machine

Hypervisor

VM

2 / 16

● Allow remote users to run guest VMs

VM

Hypervisor can be attacked by Malicious VM

3 / 16

● One of guest VMs can be malicious

VM VM

Hypervisor

Fuzzing: Feed Random Inputs to Hypervisor

Hypervisor

VM

PIO MMIO

DMA etc.

Combination of Low-level IO operation

4 / 16

Fuzzing
Input

Crash!!

5 / 16

Motivation: Too many devices, too many formats

● Hypervisor controls many virtual devices
○ Each device has its own input formats

Hypervisor

virtual devices

SCSI NIC

DisplayNVMe

Sound SATA

Timer

APIC

USB

Input

…

#1. Generating random inputs per device

#2. Relying on manual input grammars per device

6 / 16

Limitations of Current Hypervisor Fuzzing

Limitation ⇒ Cannot explore deep states of the devices

Limitation ⇒ Require unacceptable manual work to specify grammar rules

Let’s fuzz hypervisor with grammar-awareness using automatic grammar inference!

7 / 16

● Augment hypervisor fuzzing capability with automatic grammar inference

● Challenges in inferring hypervisor grammars
○ #1. Hypervisor grammars have hidden input semantics per device
○ #2. Hardware features of hypervisor introduce coverage noises

● Our approach
○ Statistical and differential learning with coverage

Overview of MundoFuzz

8 / 16

● Too difficult to infer hidden input semantics behind the hypervisor input

Challenge 1: Hidden Input Semantics

○ IO address semantics: correct semantic command should be given ○ IO address semantics: correct semantic command should be given
○ IO order semantics: correct semantic order should be given

Invoke the “Find Sector” func. (0x4)
with the parameter (0x0)

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Hypervisor Operation

Find Sector 0

Write Data

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Control Type (bar+4)
: invoke the desired function

Data Type (bar+0)
: transfers the data parameter

Invoke the “Write Data” func. (0x8)
with the parameter (0xcafe)

Hypervisor Operation

Find Sector 0

Write Data

Hypervisor Operation

Find Sector 0

Write Data

“Find Sector” should be performed before “Write Data”

Hypervisor Operation

Find Sector 0

Write Data

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Hypervisor Operation

Find Sector 0

Write Data

Example: SCSI command input

9 / 16

Solution 1: Differential Learning on Input Semantics
#1. IO address semantics

● Different IO address types react to IO address values differently

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Correct input

Hypervisor

Coverage Invoke “Find Sector”

Invoke “Other Func”

Different!!

Incorrect input
MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0xfb

○ control type ⇒ exhibits a different coverage

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Correct input

Incorrect input
MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0xfb

○ data type⇒ exhibits a same coverage

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Correct input

Incorrect input
MMIO[bar+0] ← 0xff
MMIO[bar+4] ← 0x4

Hypervisor

Find Sector 0

Find Sector 255

Coverage

Same!!

Control Type!Data Type!

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Correct input

Incorrect input
MMIO[bar+0] ← 0xff
MMIO[bar+4] ← 0x4

10 / 16

Solution 1: Differential Learning on Input Semantics
#2. IO order semantics

● IO operations wouldn’t work correctly without prerequisite IO operations
○ absence of IO operations ⇒ may distort some following coverage

Hypervisor

Coverage

Different!!Correct input
MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Incorrect input
MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Skip

input

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Dependent!

MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

11 / 16

Challenge 2: Coverage Noises

● The measured input coverage includes unwanted coverage
○ due to the asynchronous event handling (e.g., timer, interrupt event)
○ asynchronous event introduces non-deterministic (noise) coverage

expected coverage

of execution : 1

Cov. #1

measured coverage

Input

SCSI
Command

Hypervisor Operation

Write Data

Find Sector

Cov. #2

of execution : 2

Cov. #1

measured coverage

of execution : N

Cov. #1

measured coverage

Cov. #2

Cov. #N

...

Write Data

Find Sector

Interrupt event

Write Data

Find Sector

Timer event

Write Data

Find Sector

APIC event

: target: target

: noise

Example: SCSI command input

12 / 16

Solution 2: Statistical Differential Coverage Measurement

coverage #N

...

coverage #2

coverage #1

measured coverage

● Remove noise coverage by intersecting all measured coverages

: target

: noise

● Target coverage ()
○ is always captured for all execution

● Noise coverage ()
○ is captured differently for each

execution

coverage #N

...

coverage #2

coverage #1

measured coverage

coverage #N

...

coverage #2

coverage #1

measured coverage

∩
Intersection

target coverage

○ the result only contains target coverage

13 / 16

Architecture of MundoFuzz

hypervisor
input trace

correct

Hypervisor

incorrect

MundoFuzzOS

statistical
noise filter

Cov. w/ noise

Cov. w/o noise

analysis

IO addr. IO order

grammar

MundoFuzzOS

MundoFuzz-Fuzzer

Hypervisor

14 / 16

What MundoFuzz Found?

Hypervisor Bug Types Numbers

QEMU

Bhyve

Use-after-free 3
Heap Overflow 2
Segmentation Fault 3
Infinite Loop 3
Stack Overflow 1
Assertion 11

Segmentation Fault 4
Floating Point Exception 1
Assertion 12

● MundoFuzz found new 40 bugs in QEMU and Bhyve
○ 23 bugs in QEMU
○ 17 bugs in Bhyve
○ 9 of these were acknowledged as CVEs

15 / 16

Our result

● Overall coverage: MundoFuzz outperforms state-of-art hypervisor fuzzer
○ HyperCube: +4.91%
○ Nyx: +6.60%

● MundoFuzz shows higher coverage than Nyx+ (with manual grammar rule)
○ for USB-XHCI device (48 hours)

16 / 16

Conclusion

● Proposed MundoFuzz, a hypervisor fuzzing technique
○ statistically removes noise coverage in raw coverage

○ automatically learns the grammar using two hidden semantics

● MundoFuzz discovered 40 new bugs (including 9 CVEs)

● MundoFuzz presented better coverage, compared to state of the arts.

Q & A

Thank you!

Contact Cheolwoo Myung
Ph.D. Student at Seoul National University (SNU)

cwmyung@snu.ac.kr

mailto:cwmyung@snu.ac.kr

18

● MundoFuzz infers the semantic constraints by the input coverage
○ Register types

■ to synthesize the IO operations correctly
○ Order dependency

■ to place the IO operations in correct order

Our approach: Infer the grammar with semantic constraints

19

Idea: Inferring the grammar through input coverage

● Hypervisor behaves differently depending on the input grammar correctness

Correct Input

SCSI
Command

Hypervisor Operation

Write Data

Find Sector 0

Store Data in Sector 0

Where to Store?

Find Sector 0

Write Data
Incorrect Input

SCSI
Command

succeed!

coverage

failed!

coverage

If the order is changed?

Different!!

20

Let’s fuzz the hypervisor with grammar-awareness!

● Synthesizes correct input semantics with correct order

Grammar

Hypervisor Input

Enable Device();

Find Sector();

Write Data();

Hypervisor Operation

Write Data

Enable Device

Find Sector

Crash!!

21

Our approach: Inferring the grammar through coverage

● Hypervisor behaves differently if the input is given grammatically correct or
incorrect

Correct Input
Hypervisor Operation

Write Data

Find Sector 0

Store Data in Sector 0

Hypervisor Operation

Find Sector 0

Write Data

Where to Store?
Incorrect Input

What if change the order?

succeed!

failed!

coverage

coverage

22

Our approach: Inferring the grammar through coverage

● Hypervisor behaves differently if the input is given grammatically correct or
incorrect

Hypervisor Operation

Find Sector 0

Write Data

Where to Store?
Incorrect Input

failed!

coverage

23

Our approach: Inferring the grammar through coverage

● Hypervisor behaves differently if the input is given grammatically correct or
incorrect

Correct Input
Hypervisor Operation

Write Data

Find Sector 0

Store Data in Sector 0Where to Store?Hypervisor Operation

Find Sector 0

Write Data
Incorrect Input succeed!

coverage

failed!

coverage

What if change the order?

Different!!

Store Data in Sector 0Where to Store?

Grammar

Find Sector();

Write Data();

Grammar Info.

is dependent on

[Example]

24

Idea 1: Noise coverage would appear in a different way

● Measure the coverage multiple times for same input

coverage #N

...

coverage #2

coverage #1

measured coverage

expected coverage

● Remove Noise coverage by intersecting them all

∩
Intersection

: target

: noise

: target

: noise

25

Problem 2: Uncertain Input Semantics

● Input semantics are presented in a small sequence of IO interface inputs
○ hard to understand by looking at individual IO interface input

Hypervisor Input

Hypervisor Operation

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+8] ← 0xa0
DMA[0xa0] ← 0xbeef
DMA[0xa0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Value at IO address
using IO interface

Find Sector 0

Write Data

26

Problem 2: Semantic meaning in Hypervisor Input

● Hypervisor input is presented in a sequence of IO interface inputs

Input MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+8] ← 0xa0
DMA[0xa0] ← 0xbeef
DMA[0xa0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input Semantic

Find Sector 0

Write Data

??

○ hard to understand its semantic meaning by looking at individual IO interface input

Input MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+8] ← 0xa0
DMA[0xa0] ← 0xbeef
MMIO[bar+4] ← 0x4

Write Value at IO address
using IO interface

27

Idea 2: Grammar Inference with Two Semantic Constraints

● The Grammar can be reconstructed by two semantic constraints

2) order dependency1) The register types of IO address

Register Types

Control register
: invoke the desired function

Data register
: transfers the data parameter

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Find Sector 0
 (bar+4)

 (bar+0)

Hypervisor Operation

Find Sector 0

Invoke the “Find Sector” func.
with the parameter (“0”)

28

Example: too many devices, too many formats

● Need different hypervisor inputs

IO Task

Write Data

Storage A Input Storage B Input

even if these behave same functionality ● Need different hypervisor inputs

IO Task

Write Data

Storage A Input Storage B Input

even if these behave same functionality

Random fuzzing cannot develop the hypervisor input regarding the input format

29

Example: too many devices, too many formats

● Need different hypervisor inputs to control each devices

Hypervisor

Hypervisor Input

SCSI

NIC NIC

USB USB

SCSI

Virtual Device

30

Example: too many devices, too many formats

● Need different input formats to fuzz each device in hypervisor

Fuzzing Input

SCSI USB

Hypervisor

SCSI USB

31

Challenge 2: Uncertain grammar information

● Hypervisor input is presented in a sequence of IO interface inputs
○ hard to understand its grammar by looking at individual IO interface input

InputInput MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

InputInput MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Value at IO address
using IO interface

Hypervisor Operation

Find Sector 0
??

Write Data

32

Problem 2: Uncertain Input Semantics

● Hypervisor input is presented in a sequence of IO interface inputs
○ hard to infer its semantic meaning by looking at individual IO interface input

Hypervisor Operation

??
Write Data

Input MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

Write Value at IO address
using IO interface

33

Idea 2: Subdivides IO Task using Completion Signal

● Input Semantics comprise a small sequence of IO interface inputs
○ IO Task: serves as high-level semantic unit

34

Problem 3: Uncertain Grammar Rules

● With IO Task, still we have no grammar rules
○ hard to infer its grammar by looking at individual IO interface input

Hypervisor Operation

??
Write Data

Input MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

Write Value at IO address
using IO interface

35

Challenge 2: Uncertain grammar information

● Input semantics are presented in a sequence of IO interface inputs
○ hard to infer its grammar by looking at individual IO interface input

InputInput MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

InputInput MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Value at IO address
using IO interface

Hypervisor Operation

Find Sector 0
??

Write Data

36

● IO interface input serves its own semantic meaning depending on the types of
register

Idea 2: Grammar Inference with Constraints

MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Data

Register Types

Control register (bar+4)
: invoke the desired function

Data register (bar+0)
: transfers the data parameter

Invoke the “Write Data” func. (0x8)
with the parameter (0xcafe)

#1. Types of register

37

● Each Input semantic functions correctly depending on order dependency

Idea 2: Grammar Inference with Two Constraints
#2. Order dependency

Find Sector 0

Write Data

38

Idea 2: Grammar Inference with Two Constraints

● Grammar can be reconstructed by two constraints

2) order dependency1) The register types of IO address

Find Sector 0 Write Data

39

● Infer the register type by giving correct and incorrect input
● Each register type

○ due to its operational characteristic

Idea 2: Grammar Inference with Two Constraints
#1. Inferring Types of Register

● Data register has same coverage
○ two inputs only transfer a data to device

● Control register has different coverage
○ two inputs invoke different functions

40

Problem 2: Uncertain Input Semantics

● Hypervisor input is presented in a sequence of IO interface inputs
○ hard to infer its semantic meaning by looking at individual IO interface input

Hypervisor Operation

??
Write Data

Input MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

Write Value at IO address
using IO interface

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

ex
ec

41

Solution 2: Subdivides the hypervisor input into IO Request

● Input semantics comprise a small sequence of low-level IO operation
○ IO Request: serves as high-level semantic task
○ hypervisor returns completion signal after the IO request accepts

Input

Request!

Complete!

Hypervisor

Find Sector 0
progressing…done

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

ex
ec

42

● Giving correct/incorrect IO requests based on two constraints
○ Register types (of low-level IO operation)

■ gives the information on how to synthesize the IO request correctly
○ Order dependency

■ gives the information on how to place the IO request in a correct order

Our approach: Inferring the grammar with semantic constraints

Find Sector

IO Req. #1

Write Data

IO Req. #2

ex
ec

Hypervisor Operation

Find Sector

Write Data

Write Data() is
dependent on Find Sector()

15

Our approach: Inferring the grammar with semantic constraints
#1. Register Types

● Inspect the input coverage by giving correct/incorrect values at IO address
○ control register ⇒ exhibits a different coverage
○ data register ⇒ exhibits a same coverage

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Correct IO Req.

Hypervisor

CoverageFind Sector 0

Find Sector 255Incorrect IO Req.
MMIO[bar+0] ← 0xff
MMIO[bar+4] ← 0x4

Same!!

44

Example: too many devices, too many formats

● Need different input formats to fuzz each device in hypervisor

Fuzzing Input

SCSI
Command

USB
Command

Hypervisor

SCSI USB

● Need different input formats to fuzz each device in hypervisor

Fuzzing Input

SCSI
Command

USB
Command

Hypervisor

SCSI USB

Random cannot develop the hypervisor input regarding the input format

45

Challenge 2: Uncertain Input Semantics

● The hypervisor input is presented in a sequence of low-level IO operations
○ hard to infer its semantic meaning by looking at individual IO interface input

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Value at IO address
using IO interface

Hypervisor Operation

Find Sector 0
??

Write Data

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

ex
ec

46

Solution 2: Capture the Semantic Unit with Completion Signal

● Input semantics comprise a small sequence of low-level IO operation

Input

Request!

Complete!

Hypervisor

Find Sector 0Write Data

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

ex
ec

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

ex
ec

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

ex
ec

progressing…done

Find Sector(...)

Write Data(...)

○ hypervisor send completion signal after the IO request accepts
○ IO Request: serves as high-level semantic task

47

Infer the IO request with semantic constraints
#1. Register Types

● Inspect the input coverage by giving correct/incorrect values at IO address

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Correct IO Req.

Hypervisor

CoverageInvoke “Find Sector”

Invoke “Other Func”

Different!!

Incorrect IO Req.
MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0xfb

○ control register ⇒ exhibits a different coverage
○ data register ⇒ exhibits a same coverage
○ control register ⇒ exhibits a different coverage
○ data register ⇒ exhibits a same coverage

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4

Correct IO Req.

Incorrect IO Req.
MMIO[bar+0] ← 0xff
MMIO[bar+4] ← 0x4

Hypervisor

Find Sector 0

Find Sector 255

Coverage

Same!!

48

Infer the IO request with semantic constraints
#2. Order Dependency

● Inspect the input coverage by giving IO requests in correct/incorrect order
○ absence of one IO req. ⇒ may distort the coverage of others

Hypervisor

Write Data
in Sector 0

Where to Write?

Coverage

Correct IO Req.

Write Data

Find Sector 0

Incorrect IO Req.

Write Data

Find Sector 0

Different!!

49

Example: too many devices, too many formats

● Hypervisor accepts different inputs per device

Fuzzing Input

SCSI
Command

USB
Command

Hypervisor

SCSI USB

● Hypervisor accepts different inputs per device

Fuzzing Input

SCSI
Command

USB
Command

Hypervisor

SCSI USB

Random inputs cannot trigger interesting hypervisor behaviors

50

Let’s fuzz the hypervisor with grammar-awareness!

● Synthesizes correct input semantics with correct order

Grammar

Fuzzing Input

Enable Device();

Find Sector();

Write Data();

Hypervisor Operation

Write Data

Enable Device

Find Sector

Crash!!

● Synthesizes correct input semantics with correct order

Grammar

Fuzzing Input

Enable Device();

Find Sector();

Write Data();

Hypervisor Operation

Write Data

Enable Device

Find Sector

Crash!!

Grammar-aware fuzzing can explore deep state of the hypervisor!

51

Challenge 2: Hidden Input Semantics

● The hypervisor input is presented in a sequence of low-level IO operations
○ difficult to infer hidden semantics behind individual IO operations

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Value at IO address
using IO interface

Hypervisor Operation

Find Sector 0
??

Write Data

52

● Two hidden semantics

Challenge 2: Hidden Input Semantics

MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Data
Control register (bar+4)
: invoke the desired function

Data register (bar+0)
: transfers the data parameter

Invoke the “Write Data” func. (0x8)
with the parameter (0xcafe)

○ Register types (of low-level IO operation)

■ give a dedicated semantic meaning to IO operation
○ Order dependency (between low-level IO operations)

■ give a necessary order to correctly perform IO operation

“Write Data” IO operations need “Find Sector” IO operations

○ Register types (of low-level IO operation)

■ give a dedicated semantic meaning to IO operation
○ Order dependency (between low-level IO operations)

■ give a necessary order to correctly perform IO operation

Hypervisor Operation

Write Data

Find SectorMMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Data

Find SectorMMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Data

Find Sector

53

MundoFuzz overview

● Grammar-aware fuzzing with automatic grammar inference

● Idea: infer the hypervisor input grammar with input coverage

device
input trace

Hypervisor

VM

manipulation

coverage
analysis

grammar

○ #1. measure a input coverage by manipulating the input trace
○ #2. analyze the difference input coverage to make grammar

54

● Hypervisor input has its own semantic meaning

Challenge 2: Hidden Input Semantics

MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Data
Control register (bar+4)
: invoke the desired function

Data register (bar+0)
: transfers the data parameter

Invoke the “Write Data” func. (0x8)
with the parameter (0xcafe)

○ Register types (of low-level IO operation)

■ give a dedicated semantic meaning to IO operation
○ Order dependency (between low-level IO operations)

■ give a necessary order to correctly perform IO operation

“Write Data” IO operations need “Find Sector” IO operations

○ IO address semantics
■ correct semantic should be given

○ IO order semantics
■ give a necessary order to correctly perform IO operation

Hypervisor Operation

Write Data

Find SectorMMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Data

Find SectorMMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Data

Find Sector

55

● Hidden input semantics

Challenge 2: Hidden Input Semantics

Control Type(bar+4)
: invoke the desired function

Data Type (bar+0)
: transfers the data parameter

○ IO address semantics: correct semantic command should be given

“Find Sector” should be performed before “Write Data”

○ IO address semantics
■ give a dedicated semantic meaning to IO operation

○ IO order semantics
■ give a necessary order to correctly perform IO operation

Hypervisor Operation

Write Data

Find SectorMMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Data

Find SectorMMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Data

Find Sector

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

Invoke the “Write Data” func. (0x8)
with the parameter (0xcafe)

56

● Hidden input semantics

Challenge 2: Hidden Input Semantics

○ IO address semantics: correct semantic command should be given ○ IO address semantics: correct semantic command should be given
○ IO order semantics: correct semantic order should be given

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Hypervisor Operation

Find Sector 0

Write Data

Control Type(bar+4)
: invoke the desired function

Data Type (bar+0)
: transfers the data parameter

“Find Sector” should be performed before “Write Data”

Hypervisor Operation

Write Data

Find SectorMMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Data

Find SectorMMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Data

Find Sector

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

Invoke the “Write Data” func. (0x8)
with the parameter (0xcafe)

57

MundoFuzz overview

● Find hypervisor bugs through automatic grammar inference

● Idea: Infer the grammar through hypervisor input coverage
○ #1. Measure the coverage by hypervisor input

○ #2. Infer the grammar by analyzing the input coverage

input

Hypervisor
VM

statistical
noise filter

Cov. w/ noise

Cov. w/o noise

analysis

Reg. Type Order Dep.

grammar

analysis

grammar

coverage

58

MundoFuzz overview

● Augment hypervisor fuzzing capability with automatic grammar inference

● Idea: Infer the grammar through hypervisor input coverage
○ #1. Measure the coverage by hypervisor input

○ #2. Infer the grammar by analyzing the input coverage

statistical
noise filter

Cov. w/ noise

Cov. w/o noise

analysis

Reg. Type Order Dep.

grammar

59

● We found two challenges in inferring hypervisor input grammars
○ challenge #1. Coverage noises

: make different input coverage even same hypervisor input is given

○ challenge #2. Hidden Input Semantics
: hard to infer the hidden semantics behind the hypervisor input

● Our approach: Statistical and differential learning with coverage

How to teach hypervisor grammar awareness?

60

Challenge 2: Hidden Input Semantics

● Too difficult to infer input semantics behind the hypervisor input
○ hypervisor input is presented in a sequence of IO operations
○ difficult to infer hidden semantics behind individual IO operations

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Value at IO address
using IO interface

Hypervisor Operation

Find Sector 0
??

Write Data

61

Challenge 1: Hidden Input Semantics

● Too difficult to infer input semantics behind the hypervisor input
○ hypervisor input is presented in a sequence of IO operations

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Input

SCSI
Command

MMIO[bar+0] ← 0x0
MMIO[bar+4] ← 0x4
MMIO[bar+0] ← 0xcafe
MMIO[bar+4] ← 0x8

Write Value at IO address
using IO interface

Hypervisor Operation

Find Sector 0
??

Write Data

