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Abstract—Sharing training data for deep learning raises critical
concerns about data leakage, as third-party AI developers take
full control over the data once it is handed over to them. The
problem becomes even worse if the model trained using the
data should be returned to the third-party Al developers—e.g.,
healthcare startup training its own model using the medical data
rented from a hospital. In this case, the malicious developers
can easily leak the training data through the model as he can
construct an arbitrary data flow between them—e.g., directly
encoding raw training data into the model, or stealthily biasing
the model to resemble the training data. However, current model
training frameworks do not provide any protection to prevent
such training data leakage, allowing the untrusted AI developers
to leak the data without any restriction.

This paper proposes DLBOX, a new model training framework
to minimize the attack vectors raised by untrusted Al developers.
Since it is infeasible to completely prevent data leakage through
the model, the goal of DLBOX is to allow only a benign model
training such that the data leakage through invalid paths are
minimized. The key insight of DLBOX is that the model training
is a statistical process of learning common patterns from a
dataset. Based on it, DLBOX defines DGM-Rules, which determine
whether a model training code from a developer is benign or
not. Then, DLBOX leverages confidential computing to redesign
current model training framework, enforcing only DGM-Rules-
based training. Therefore, untrusted AI developers are strictly
limited to obtain only the benignly trained model, prohibited from
intentionally leaking the data. We implemented the prototype
of DLBOX on PyTorch with AMD SEV-SNP, and demonstrated that
DLBOX eliminates large attack vectors by preventing previous
attacks (e.g., data encoding, and gradient inversion) while imposing
minimal performance overhead.

I. INTRODUCTION

Sharing training data for deep learning has been widely
studied in literature [1], [2], [3], as it allows AI developers
to improve their models using the dataset shared by others.
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Meanwhile, data owners can also benefit from sharing their
proprietary data by receiving monetary rewards from the
developers. For instance, it is common for healthcare startups
to rent (or contract) medical data from hospitals to train
their own models [1], [2]. As another example, startups
aiming to prevent financial fraud often require large volumes
of transaction data from the banks to train their fraud detection
models [4], [5].

However, sharing training data raises concerns about data
leakage, as the data is a valuable asset of the data owners
(e.g., labeled MRI images collected over a long period). While
the data owners wish to restrict the data to be used only for
training an Al model, untrusted Al developers can easily leak
the data once it is handed over to them, causing financial
and reputational losses [6] to the data owners. Suppose an Al
developer is allowed to access a dataset of a data owner, and
he runs an arbitrary model training code (e.g., a Python [7]
code) that reads the data and then trains a model. Once the data
is read, it is remarkably easy for him to leak the data—e.g.,
sending it over network or saving it into his external disk.

For these reasons, data owners often restrict the computing
environment for the Al developers. Specifically, the model
training has to be performed in the physically and network-
isolated environment, so called an air-gapped environment [8].
In this air-gapped environment, the developers’ output is
verified, and only the final trained model is allowed to be
exported outside the environment. However, a malicious
developer can still leak the data through the model, since
he has a full control over how the data is computed into the
model. For example, he may embed the encoded-data into the
model, decoding it later to reconstruct the original data [9].
In the extreme case, every bit of the model can be abused to
leak the training data, indicating whether a specific sample
is used or not [10]. Due to this reason, data owners are still
hesitant to share their data, preferring not to take the risk of
data leakage [11], [12].

Despite the practical impact of this problem, to the best of
our knowledge, there has been no systematic protection for the
data in this problem setting. While several approaches have
been proposed in the domain of privacy preserving machine



learning [13], [14], [15], [16], we found they are not applicable
to our scenario, where the untrusted Al developers have full
control over the data. For example, federated learning [13]
assumes the adversary does not have control over the data,
limiting them to obtain only benignly computed gradients.
However, the attackers in our scenario can perform arbitrary
computations with the data, such as encoding it to the model to
be leaked later [9]. Multi-party machine learning [16] cannot
be applied either, as it assumes the model training code itself
is benign—i.e., data leakage through the trained model is out-
of-scope. However, we assume the untrusted Al developers can
implement a malicious model training code to leak the data.

Unfortunately, we found that it is infeasible to completely
prevent the malicious Al developers from leaking the data. This
challenge is largely due to the nature of deep learning—i.e.,
the data (of the data owner) must be fed into the model, which
eventually returns to the Al developers. As long as the model
shows a reasonable performance, it should remember some
information of the data, meaning that the model has to be
computationally dependent to the data. Thus, the malicious
developers would be able to reconstruct the data, once enough
information is collected from the models.

Nevertheless, current model training frameworks [17], [18]
offer no data protection at all, allowing malicious Al developers
to easily leak the data, even without conducting sophisticated
attacks (e.g., model inversion [19]). Thus, we design DLBOX,
a new model training framework to minimize the attack
vectors raised by untrusted Al developers. Instead of trying to
completely prevent data leakage through a model, the goal of
DLBOX is to allow only genuinely training an AI model such
that the data leaks through invalid paths are minimized. The
key insight of DLBOX is that the model training is a statistical
process of learning common patterns from a dataset. In other
words, a benign model training program treats each data sample
equally, so that each sample makes a fair contribution to train a
model. As such, DLBOX enforces the Al developers to perform
only the benign model training, but prevents any other attempts
not satisfying this observation, thereby preventing intentional
data leakage.

To this end, we define DGM-Rules, which determine whether
a model training from a developer is benign or not. To be
specific, DGM-Rules concretize our key observation, checking
whether each sample fairly contributes to the model throughout
the entire training procedure. DGM-Rules consist of three rules,
Rp, R, and Ry, where each rule checks the procedure of
Data augmentation, Gradients computation, and Model update.
In particular, Rp monitors whether the same augmentation
is applied to all samples. R requires all gradients to be
back-propagated from equally calculated loss values, and Ry
enforces the model to be updated only by aggregating the
gradients from Rg. Then, we demonstrate that enforcing
DGM-Rules can eliminate large attack vectors by preventing
most of the previous attacks to leak the data [9], [20].

Based on the definition of DGM-Rules, DLBOX redesigns
current model training framework to enforce DGM-Rules-based
training. In particular, DLBOX consists of two components:
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1) DL-Isolate, which isolates the address space in the model
training procedure to prevent untrusted code from leaking the
data, and ii) DL-Oracle, which keeps track of the computations
performed on the data to check whether the resulting model is
trained under DGM-Rules or not. Thus, the developers obtain
only the models trained under DGM-Rules, strictly limited from
leaking the data. Meanwhile, all the components are protected
by an enclave (e.g., AMD confidential VM [21]) such that
both the data owners and Al developers can guarantee the
confidentiality of their data and model training code.

We implemented DLBOX on PyTorch [17], [22], which is
widely used for deep learning, and we employed AMD SEV-
SNP [21] to ensure its security guarantees. Thus, DLBOX
can readily train the state-of-the-art models with real-world
datasets, while requiring minimal modification to the model
training codes. We evaluated DLBOX on image and lan-
guage models across various tasks: i) image classification
and segmentation tasks using fully-connected, convolution,
ResNet18 [23], MobileNet-v2 [24], and FCN [25] models, and
ii) sentiment analysis, translation and language modeling
tasks using Bert [26], T5 [27], and Gpt2 [28] models. The
evaluation results demonstrate that DLBOX eliminates the large
attack vectors by preventing bit-encoding, memorizing, and
gradient-inversion attacks (i.e., categorized in §1I-B) while
imposing 4% overhead of learning time on average.

II. BACKGROUND

In this section, we provide a brief background on deep
learning (§1I-A) and the attacks to leak shared data while
training a model (§1I-B). Then, we introduce confidential
computing, which ensures confidentiality and integrity of
DLBox (§1I-C).

A. Deep Learning

A deep learning model is a function with a set of weights,
taking input data and returning a corresponding output. For
example, an image classification model takes an image as input
and outputs the corresponding label of the image (e.g., dog or
cat). To be specific, the deep learning model is composed of
the model architecture and the weights. The model architecture
determines how the input (e.g., an image) is computed into
the output (e.g., a likelihood of each label). The weights
determine the proportion of the feature value propagation in
the architecture.



In order to maximize the model performance (e.g., classifi-
cation accuracy), Al developers train their models using the
data, so-called model training. The goal of model training is
to find the best set of weights that maximizes the performance.
As such, the model training optimizes a loss value, which
penalizes the model when it returns a wrong output (e.g., an
incorrect label) on a given input (e.g., image). The model
training iteratively updates the weights by computing gradients
from the loss values and subtracting it from the weights. The
procedure terminates when the weights yield a sufficiently low
loss value or high testing accuracy.

Model training can be done with a vast number of different
ways as there are many customizable components as shown
in Figure 1. To be specific, Al developers can customize i) the
model architecture, ii) how the loss is computed, iii) how
the weights are updated, and iv) hyperparameters such as
the maximum number of epochs. Furthermore, the training
data can be augmented through arbitrary operations (such as
random flipping) as it is shown that such data augmentation
outperforms the baseline [29], [30]. For these reasons, deep
learning libraries such as PyTorch [17] do not restrict how
the implementation of model training should be carried out.
Instead, those leave the implementation details entirely up to
the developers.

B. Attacks to Leak Shared Training Data

On the current model training frameworks, malicious Al
developers have an unlimited number of ways to leak the
training data through the model. This is because they can
construct purely arbitrary data flows (i.e., model training code)
from the data to the model, and the current model training
frameworks do not impose any restriction on it. We enumerate
a number of already known attacks in the following, but we
want to note that the attackers are not limited as they can do
whatever they want.
bit-encoding-attacks. First of all, malicious developers can
simply leak training data by just encoding the raw data directly
into the model. The encoded bits can be the data samples itself,
but also the set of binary values conveying any information of
the data. For example, a malicious Al developer may abuse
each bit of the model to indicate the existence of specific
samples, reconstructing those samples from the model later.
To be specific, he would construct a codebook beforehand that
indicates which bit (of a model) corresponds to which sample—
e.g., 3" bit corresponds to the sample x. Then, while training,
he can set each bit of the model depending on the existence
of each sample. Finally, he would be able to reconstruct the
data from the model using the codebook—e.g., if 3™ bit is set
in the model, reconstruct the sample x.
memorizing-attacks. More skillful attackers would perform
memorizing attacks [9], with which the model stealthily
memorizes the data without compromising its performance.
With this attack, the resulting model looks benignly trained
(e.g., correctly classifying images). However, the model is
actually used as a covert channel to leak the training data. For
instance, Song et al. [9] demonstrated that using the training
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Figure 2: System model of DLBOX.
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data as a regularization term can bias the model to resemble
the data (while also working well), thus eventually leaking the
data.

gradient-inversion-attacks. Gradient inversion attacks [31],
[20], [32] can also be retrofitted to leak the training data by
reconstructing it from the gradients of a model. To be specific,
malicious developers may obtain two versions of model weights
which differ by only a gradient of a certain sample, and retrieve
the gradient. Then, they can perform already studied gradient
inversion attacks [31], [20], [32] to reconstruct the sample
from the retrieved gradient. However, it is known that the
performance of gradient inversion attacks sharply decreases if
the target gradients are aggregated from multiple samples [32].
model-inversion-attacks. Finally, malicious AI developers
can perform model inversion attacks [33], [19], [34], which
directly reconstruct the training data from the model. These
attacks are known to be not effective without auxiliary
datasets [19], but the malicious developers may try a variant
of these attacks. For example, they may train a model with
only a single sample (ignoring all others) in order to bias the
model to be more vulnerable to the inversion attacks.

C. Confidential Computing

Confidential computing is a security service provided by
the trusted execution environments (TEE) of CPUs (e.g.,
Intel SGX [35], TDX [36], and AMD SEV [21]) and GPUs
(e.g., NVIDIA HI100 [37]), so called enclave. Enclave is
protected against all privileged components including OSes,
hypervisors, and even SoC, thus guaranteeing the integrity and
confidentiality of a program running on it. Furthermore, the
enclaves provide a remote attestation, by which the owner of an
enclave can verify a correct program is loaded before sending
their data to it [35], [21]. Thus, emerging cloud applications are
using (or expected to use) confidential computing to provide a
higher level of security in cloud computing environment (e.g.,
Spark [38], and Hadoop [39]).

IIT. MOTIVATION

In this section, we introduce the system model and the
problem setting that DLBOX focuses on (§III-A). Then, we
formally describe the problem, and discuss the infeasibility of
preventing data leaks in such situation (§III-B). Finally, we
briefly introduce our solution to the problem (§III-C).

A. System Model of DLBOX

DLBoOX focuses on the problem arising while sharing the
data for training a deep learning model—e.g., healthcare



startups training a cancer diagnosis Al on MRI images shared
from a hospital [1], [2]. As shown in Figure 2, DLBOX assumes
three parties involved in this situation: a data owner, an Al
developer, and a cloud provider.

« Data owner shares his training data to the Al developers
for training their models. While allowing the developers to
train their models with his data, he does not want them
to leak or abuse the data. This is because the data itself
is a valuable asset of the data owner, which often holds a
significant monetary value for trading (e.g., Reddit’s sale of
user data for Al training [40]).

o Al developer trains his own model using the shared data
by his own model training code. However, he does not
want to reveal his model training code and the resulting

trained models, as they are also the proprietary assets.

For instance, deep learning algorithm has become more
important than ever, as it has been shown that a novel model
architecture with trained weights can outperform the human
(e.g., GPT [41]). This trend is expected to be even stronger as
the companies and nations recognize the devastating power
of Al [42], [4], [41].

o Cloud provider runs the training code on behalf of the Al
developer. Thus, the cloud provider receives both the training
data (provided by the data owner) and the model training
code (provided by the Al developer), and returns the trained
model (to the developer).

Problem Setting. In this situation, the training data (from
the data owner) is not faithfully protected from malicious Al
developers and cloud providers. The data can be easily leaked
and abused, since it is under the full control of model training
code (of the Al developer), running on a cloud platform (of the
cloud provider). In the current model training framework, the
malicious developers can easily leak the data over the network
or through a model, and the cloud provider can easily access
and leak the data.

However, merely opening (and verifying) the model training
code and protecting its execution environment cannot be

the solution as it harms the requirements of Al developers.

Furthermore, it is not universally defined what a benign model
training is, which does not incur (or at least minimizes) the data
leakage. Given there are vast range of different model training
algorithms (e.g., different data augmentations [29], [30], and
model architectures [43], [25], [41]), it is even challenging to
manually determine whether a given model training code is
benign.

Limitations of Previous Approaches. In this respect, we
found that previous approaches in privacy preserving machine
learning [13], [14], [15], [16] cannot be applied to our problem
either. Federated learning [13] assumes the attacker does
not have control over the data, limiting them to obtain only
benignly computed gradients. However, we assume the attacker
controls the entire data flow, thus easily embedding the

data to the model or maliciously biasing the gradients [9].

Differential privacy [15] does not apply to general model
training algorithms [29], [17], limited in its usability and

scalability. Multi-party machine learning [16] assumes the
model training code itself is benign, but only ensure that
the code is jointly computed without exposing private data.
However, we assume the code itself can be malicious to leak
the data (e.g., embedding the data to the model). We leave
further discussion on the related works in §X.

B. Infeasibility of Preventing Data Leaks through the Model

Given this problem scope, our first observation is that it
is impossible to completely prevent data leaks in the model
training. To be specific, as long as the model is trained on
the data, it should eventually remember the information of
data, and the Al developers finally obtain the model. Thus, the
training data should also be leaked through the model.

In order to clarify this point, we formally describe the
problem setting and discuss its unsolvable nature in the
following.

Problem Setting: Model Training on Shared Data. Based
on the explanation in §I1I-A, we formally describe the problem
setting as follows:

Given training data samples {z; | z; € S A 1 <i < N}
from the data owner, where S is the sample space and N is
the number of samples, an Al developer obtains a trained
model Oyoqer = f(21,...,2N), Where f is an arbitrary model
training function (i.e., code) developed by the developer.

With this definition, it is trivial for a malicious Al developer
to leak the training data. As an extreme yet straightforward
example, the malicious developer can steal the data sample itself
by providing an identity function f(xz1,...,zx5) = . (Where ¢
is any constant), obtaining the output Oyoqe1r = f(21,...,ZN) =
z.. Even a boolean function f(z1,..,zy) = bool(z., = «)
would leak the information of z., telling whether it is « or
not. As a real world example, it is possible to just encode the
raw data samples into the model.

Observation: Infeasibility of Preventing Data Leaks through
the Model. In order to prevent such data leaks, we should
find a set of ideal model training functions Fjgea1, Which
makes it impossible to reconstruct any data sample from the
output trained model. Thus, we can prevent the data leaks
by enforcing the AI developers to compute only such ideal
model training functions. To be specific, Figea1 should satisfy
following properties:

Figea1 is a set of functions, where figea1 € Flideal has
following two properties:
1) figea1 1S able to train a deep learning model.

2) Given figea1, it is impossible to reconstruct any sample
x; from the trained model Oyoge1 = fidea1(Z1, ..., TN ).

However, such F}4ea1 does not exist as it is studied before in
the differential privacy literature [44], and thus, it is infeasible
to prevent data leaks in model training. While we do not provide
the proof here, the reasoning is fairly straightforward. As long
as the Al developer obtains a reasonably working model, which



is trained on the shared data, the model necessarily contains
the information of the data, and the developer obtains it. A
malicious Al developer would be able to reconstruct the training
data once the enough amount of information is collected from
the trained models.

C. Our Solution: Enforcing a Benign Model Training

Despite the practical impact of this problem, current model
training frameworks [17], [18] provide no data protection at
all, allowing the malicious Al developers to easily leak all
the samples. On the other hand, the unsolvable nature of the
problem hinders the community from proceeding to a more
viable (but possibly incomplete) solution. Thus, sharing the
training data for deep learning is still largely prohibited due
to the aforementioned security reasons.

To this end, we aim at designing a baseline protection for
the data, which is still incomplete, but effectively eliminates
large attack vectors in the model training. Instead of trying
to completely prevent data leaks through a model, we try
to enforce only a benign model training, thereby preventing
the data leakage through invalid paths. In particular, our key
observation is that the model training is a statistical process of
learning common patterns from a dataset. That is, the benign
model training should treat each data sample equally, thus
making a fair contribution to the model.

Based on this observation, we introduce DGM-Rules, which
determine whether a model training code from an Al developer
is benign or not (i.e., §IV). Specifically, DGM-Rules check
whether the model training procedure satisfies our key observa-
tion (i.e., equal treatment of the samples) so that the model is
benignly trained. Then, we justify that the malicious attempts to
intentionally leak the data do not satisfy DGM-Rules, convincing
its security properties (i.e., §VII).

Then, we design DLBOX to enforce DGM-Rules-based
model training (i.e., §V). In particular, DLBOX sandboxes
the untrusted model training code, and monitors the entire
training procedure to check whether the model is trained under
DGM-Rules. Thus, the Al developers can obtain only the models
trained under DGM-Rules, strictly limited from intentionally
leaking the data. In addition, DLBOX is further protected by
confidential computing to meet the security requirements of
both the data owner and developers.

IV. DGM-RULES: DETERMINING A BENIGN MODEL
TRAINING

DGM-Rules determine whether a given model training code
from an AI developer is benign (i.e., genuinely training a
model) or not. Our key observation behind DGM-Rules is that
the model training is a statistical process of learning common
patterns from a dataset. In other words, the benign model
training should treat each data sample equally, and the samples
should have fair contributions to the output model. Thus, we
define DGM-Rules to concretize this key observation in the
context of model training code.

Algorithm 1 Typical model training procedure.

Input:

1: X ={z1,...,zn}: training data samples
Output:

2: O7: trained model weights after 7" epochs
Body:

1: Set augmentation A(zy),

2: loss function L(0¢, &r),

3: learning rate

4: Initialize model weights 6o

5: Augment samples

6: X ¢ {&n|n = Alzn) Azn € X}

7. Split samples to mini-batch

8 {B1,...,Bju}<—)2

9: for each epoch t € [T] do

10: for each mini-batch B,, € {B1, ..., By;} do

11: Compute gradients

12: For each &, € By, compute gm (Zn) < Vo, L(0¢, &n)
13: Average gradients

14: gm < 15 2gm (En)

15: Descent

16: 9t<—9t—n~§m

17: Update model weights 6¢41 < 6,
18: return 61

A. Definition of DGM-Rules

In order to define DGM-Rules, we start from a typical model
training procedure as shown in Algorithm 1. The model
training procedure can be characterized into three phases:
i) data augmentation (i.e., lines 5-6), ii) gradients computation
(i.e., lines 11-12), and iii) model update (i.e., lines 13-17).
Specifically, the data augmentation applies a variation (e.g.,
random flipping [30]) to each sample in order to improve
the robustness of the model [29], [30]. Then, gradients are
computed from each (augmented) sample through equally
calculating a loss value and back-propagating against the model
weights. Finally, the model is updated by adjusting the gradients,
where all the gradients (from each sample) are used for each
epoch.

The key take away from this observation is that each
sample goes through the same computation (except the different
model weights) to be the gradients, and all the samples are
used exclusively and exhaustively to update the model. This
is because the goal of deep learning is to learn common
patterns from the samples, and there is no need to prioritize
or discriminate a specific sample. While data augmentation
techniques such as a resampling [30] may oversample (or
undersample) the samples under a certain label, still there is
no need to discriminate a specific sample among those of the
same label. We discuss the generality of DGM-Rules in §IX.

Based on this observation, we define DGM-Rules Rp, Rq,
and Ry for each Data augmentation, Gradients computation,
and Model update phase as shown in Table I. Again, DGM-Rules
capture the common nature of deep learning, which treats each
sample equally to contribute to the model. To be specific, the
rule for Data augmentation (i.e., Rp) requires the samples to



Table I: Definition of DGM-Rules.

Phase DGM-Rules

Data augmentation
Gradients computation
Model update

Rp: All samples must go through the same augmentation.
Rg: All gradients must be computed by back-propagating a loss value, which is equally computed from each sample.
R Model must only be updated by exhaustively adjusting the gradients from each sample, which are computed under Rg.

go through the same augmentation operations. The rule for
Gradients computation (i.e., Rg) enforces the gradients to be
back-propagated from equally computed loss values, and the
rule for Model update (i.e., Rng) enforces the model to be
updated by adjusting all the gradients from R, exhaustively
and exclusively. Thus, any benign model training would satisfy
DGM-Rules regardless of the augmentation operations [29], [30],
loss functions [45], and model update strategies [46], as long
as it treats each sample equally. Based on this definition, we
justify in §VII that DGM-Rules successfully prevent the previous
attacks to leak the training data (i.e., explained in §II-B).

V. DLBOX: ENFORCING DGM-RULES WHILE MODEL
TRAINING

Then, we design DLBOX based on confidential computing
to enforce DGM-Rules while training a model on shared data.
DLBOX is a secure model training framework with which Al
developers can train their models without revealing their code,

while the data owners can be assured the security of their data.

In addition, the data is further protected against malicious
cloud providers leveraging the inherent security guarantees of
confidential computing [36], [21].

Threat Model. DLB0OX employs CPU and GPU enclaves [35],
[36], [21] in the untrusted cloud, ensuring its confidentiality
and integrity to the other parties (i.e., data owners and Al
developers). Thus, it does not trust any other entity outside
the enclave which includes untrusted OSes, hypervisors, and
peripheral devices. We assume the implementation of DLBOX
is correct such that a malicious Al developers and cloud
providers cannot compromise its internal logic. On the other
hand, we do not consider the general security limitations
of confidential computing, such as micro-architectural side
channels [47], [48], [49] and Iago attacks [50].

Overview. The overall design of DLBOX is shown in Figure 3.
DLBoOX takes the training data and model training code as
input, and outputs only the benignly trained models. Thus,
the data owner can be assured that DLBOX prevents any
unauthorized data leakage (not satisfying DGM-Rules), while
the developers can train their models without revealing their
code and models.

We describe the overall workflow of DLBOX as follows:
1) a data owner uploads his data into the enclave after attesting
DLBoOX is correctly loaded (D in Figure 3), 2) then, an Al
developer runs his model training code (e.g., Python script
using PyTorch [17]) on DLBOX to train his own model ().
3) Meanwhile, the code and data are located in different
address spaces so that the developer’s code cannot directly
access the data (3)). Instead, operations on the data are only
performed through sanitized APIs which are invoked by the
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Figure 3: Overall framework of DLBOX
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Adversaries cannot steal training data.

code. 4) During the code execution, DLBOX continuously
traces the operations performed on the data while training a
model (@). These traces are used later to check DGM-Rules.
5) Finally, when the model training ends, DLBOX checks if
DGM-Rules are satisfied, and returns the model to the developer
only when it is true ().

To this end, DLBOX designs two key components:
1) DL-Isolate, which isolates the address space of the
code and data to prevent unauthorized accesses (§V-A), and
2) DL-Oracle, which monitors end-to-end data flows from the
data to the model, and determines whether the model is trained
under DGM-Rules (§V-B). We describe the designs of these key
components in the following.

A. Preventing Unauthorized Accesses with DL-Isolate

In order to prevent data leaks, DLBOX needs to guarantee
that i) the AI developers cannot directly access the data, and
ii) they cannot tamper with DLB0OX’s logic (e.g., DGM-Rules
checking mechanism). However, current model training frame-
works [17], [18] do not provide such protections as they do not
consider the developers themselves can be malicious, and thus,
the data is under full control of the developers. Suppose an
example model training code as shown in Figure 4-(a), which
is a Python script using PyTorch, for MNIST classification [51].
Upon running the script, the code and data are loaded into
the same address space (as naturally) as shown in the original
address space of Figure 4-(b). Within the same address space,
the code confronts no restriction to access, modify, and even
leak the data (through I/O devices or models).

Thus, DL-Isolate isolates the unified address space into
1) unsafe address space, where the model training code runs, and



1 def mainQ):

2 samples, labels = sample_init()

3

4 transforms = Compose([ToTensor(), Normalize(®, 1)])
5 samples = [transforms(s) for s in samples]

6

7 dataset = TensorDataset(samples, labels) # Dataset
8 loader = Dataloader(dataset, batch_size=32)

9

10 model = plModule() # Training-Template

11

12 trainer = Trainer(gpus=1, num_epochs=10)

13 trainer.fit(model, train_dataloaders=loader)

(a) Example model training code.
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(b) Isolated address space by DL-Isolate.
Figure 4: Design of DL-Isolate.

ii) safe address space, where the training data (and its following
data flows) are loaded (i.e., isolated address space in Figure 4-
(b)). In particular, the safe address space is populated in
an enclave so that the model training code, as well as the
untrusted OSes and hypervisors, cannot directly access the
data. Furthermore, all data flows derived from the training data
(e.g., computed gradients) are confined in the safe address
space such that the model training code cannot get any (partial)
information of the data not satisfying DGM-Rules.

Meanwhile, DL-Isolate provides sanitized APIs for the
model training code to perform operations on the data. Es-
pecially, the safe address space loads trusted libraries for
deep learning (e.g., PyTorch [17]), and allows the code from
unsafe address space to invoke (trusted) functions on the data.
More specifically, DL-Isolate introduces a Proxy variable
inside the unsafe address space (e.g., Proxys), which references
each object in the safe address space (e.g., samples). Thus,
the code can invoke a function on the referenced object
by requesting it through the corresponding Proxy variable.
However, all resulting objects of the functions do not leave
the safe address space, and the untrusted code only receives
the references to those new objects (e.g., Proxyp referencing
dataset). This prevents the code from getting any information
of the data. Finally, only a benignly trained model, which
satisfies DGM-Rules, is exported to the unsafe address space for
the developers to use it.

On the other hand, this strict address space isolation may
hinder the model training procedure in terms of i) debugging
and hyper-parameters tuning, and ii) exception handling. For
instance, a developer would not be able to visualize a data
augmentation procedure or analyze a specific sample, as such

I

H it Initialize ASTs
1:i load samples {xy, ..., Xy} [
... .
Data owner

AST,

2:i {xq, ..., x5} < get_samples()

AST,
’&onstruct ASTs

SFa %

AST, AST,

3:i @ « initialize_model ()

4:i for x;in {x4, ..., xp}

5:i do

6 X; <« Normalize(x;,0,1)
7:i done

8:i Dataset({Xy, ..., Xn})
9:i Training _Template(0, fioss, ...) @,

6 Check DGM-Rules

Ry, : have same ASTs?

. - ?
10 return @ R : back-propagated?
\ N
time

Al developer “| Ry, : use all samples?

Overall Workflow Operations in DL-Oracle

Figure 5: Design of DL-Oracle.

data flows cannot leave the safe address space—i.e., they do
not satisfy DGM-Rules. Furthermore, exception information
while processing the data would not be exposed, leaving
the developers in the dark. In order to alleviate such cases,
DL-Isolate allows the data owner to configure a limited
number of data flows to be exposed to the developers, even
if they do not satisfy DGM-Rules. We discuss these trade-offs
between security and usability in §IX.

B. Checking Model Training Procedure with DL-Oracle

With the help of DL-Isolate, DL-Oracle securely monitors
the model training procedure performed by the AI developers.
Especially, DL-Oracle traces end-to-end data flows from the
samples to the model so that it can check whether the model
is trained under DGM-Rules. As explained in §IV, DL-Oracle
checks whether i) all data samples go through the same
augmentation (i.e., Rp), ii) all gradients are computed by
back-propagating a loss value, which is equally computed from
each (augmented) sample (i.e., Rg), and iii) the model is
updated only by adjusting all the gradients from each sample,
which is computed under Rg (i.e., Ra).

To this end, DL-Oracle designs a taint tracking mechanism
that 1) traces the operations on the data (e.g., line 5 of Figure 4-
(a)) to remember the augmentation history, and ii) sanitizes the
taints by hooking the model training APIs (e.g., line 7 and 10
of Figure 4-(a)) to confirm DGM-Rules are satisfied. Thus,
DL-Oracle returns the trained model only when the untrusted
code satisfies DGM-Rules by invoking the model training APIs
with equally tainted samples (i.e., equally augmented samples).

In order to trace the augmentation history of the samples,
DL-Oracle constructs an abstract syntax tree (AST) for each
sample, inserting a node to the AST whenever an opera-
tion is applied. For example as shown in Figure 5, upon
loading the samples into the safe address space, DL-Oracle
initializes the ASTs with a single (leaf) node denoting each
sample (i.e., ). Then, for each augmentation operation (e.g.,
Normalize(x;,0,1) in line 6), DL-Oracle inserts a root node
denoting the operation, with leaf nodes denoting the arguments
passed together, if any (i.e., @). Thus, the ASTs are constructed
throughout the entire model training procedure, and the samples



with the same augmentation history construct the same ASTSs
(except the sample itself).

Then, DL-Oracle checks if DGM-Rules are satisfied by hook-
ing the boilerplate model training APIs, which are commonly
used in deep learning to standardize the training proce-
dures [22], [17], [18] (i.e., line 8, 9). Specifically, DL-Oracle
leverages i) Dataset API [52], [53], which is used to pipeline
the given (augmented) samples to the model training procedure,
and ii) Training-Template API [54], [55], [56], which provides
a unified interface to implement the loss function, and model
update strategies. Thus, DL-Oracle requires the developers
to use these boilerplate APIs. DL-Oracle then checks whether
they correctly employ those APIs following DGM-Rules.

Upon the invocation of model training APIs, we check the
rules as follows (i.e., ®). For the data augmentation rule Rp,
we check that all samples used in initializing the Dataset have
the same AST, indicating the same augmentation history. Then,
for the gradients computation rule Rg, we analyze that the
code for loss function implemented in Training-Template is
self-confined—i.e., the code uses only the sample given as an
argument, and not referencing any external variables. Since
the Training-Template uses the same loss function code for
every sample [54], [55], [56], and back-propagates the loss
values to be the gradients, we can guarantee the rule Rg is
satisfied. Finally, for the model update rule Ryg, we check
that all the samples (initially loaded by the data owner) are
used without any duplication in initializing the Dataset. As
the Dataset uniformly pipelines the given samples (by default)
for gradients computation and model update [52], [53], we can
guarantee that the rule Ry is satisfied.

When all the rules are satisfied, DL-Oracle exports the trained
model so that the developers can freely utilize it. While the
current design of DL-Oracle limits the model training code
to use only the boilerplate APIs, we want to note that using
those APIs is becoming more popular in the Al industry [57].
It is our future work to extend DL-Oracle to support arbitrary
model training code.

VI. IMPLEMENTATION

We implemented DLBOX on Python [7] to support
PyTorch [17], which is a widely used deep learning library.
Especially, we packaged DLBOX as a library, thus the Al
developers use DLBOX by importing it in a Python script,
or Jupyter Notebook [58]. In addition, we employed AMD
SEV-SNP [21] to isolate and protect the safe address space
inside a confidential VM.

Implementation of DL-Isolate. We implemented DL-Isolate
by compartmentalizing the original Python process into i) a
client process, which populates the unsafe address space, and
ii) a server process, which populates the safe address space
in a confidential VM. In particular, each process populates its
own Python context, which loads libraries and runs a code
as usual. However, the Al developer’s code executes on the
client process only, while the data is initially loaded into the
server process, which does not directly run the developer’s
code. As the client process and server process are isolated at

def main():

1
2 |@ samples = Proxy(’_SAMPLES’)

3 labels = Proxy(’_LABELS’)

4

5 transform = transforms.Compose([

6 transforms.Normalize(0, 1)

7 D

8

9 samples = [transform(s) for s in samples]

10 samples = torch.cat(samples)

11 |@ dataset = TensorDataset(samples, labels)

12 loader = DatalLoader(dataset, batch_size=32)
13 I() model = plModule()

14 trainer = Trainer(gpus=1, max_epochs=10)

15 trainer.fit(model, train_dataloaders=loader)

17 class plModule(pytorch_lightning.LightningModule):

19 |@ def training_step(self, batch, batch_idx):
20 imgs, labels = batch

21 preds = self.model(imgs)

22 loss = self.loss_fun(preds, labels)

23

24 return loss

Figure 6: Example code for training ResNet18 [23] model on
Cifar10 [61] dataset in DLBOX.

virtualization layer (and even confidential VM), the malicious
developers cannot affect the server process even if they control
the entire software stack (e.g., building and running a malicious
Python C extension module [59]).

Meanwhile, the server process loads trusted libraries, and
we implemented the client process to invoke the functions in
server process through remote procedure calls (i.e., gRPC [60]).
We assumed open-source libraries such as PyTorch [17] are
trusted as they are rigorously managed by maintainers, but the
decision for trusted libraries depends on the data owners. We
implemented the Proxy variables in the client (as explained
in §V-A) to seamlessly convert a function call to a gRPC, which
invokes the corresponding function on the referenced object
in the server. For example, suppose a Tensor [17] variable S
in server and its Proxy variable P in client. A model training
code would invoke the mean method of P through P.mean() as
usual (assuming it is a Tensor), but P would internally forward
the method to S, returning a reference to the resulting object
of S.mean(). Thus, actual results of the functions remain in
the safe server process, not leaking the data.

We implemented Proxy with 1,700 Lines of Code (LoC)
in Python and the gRPC communication with 150 LoC for
the client and server each. In addition, we implemented a
wrapper library that helps a model training code to seamlessly
use DLBOX package in 300 LoC. We discuss the design
considerations for implementing DL-Isolate regarding the
usability and performance, in §IX.

Implementation of DL-Oracle. We implemented DL-Oracle to
trace every function invocation (through gRPC) on the samples
and its descendant objects to build ASTs. In particular, we
applied a minor optimization that remembers the AST in a
hash representation as like a merkle tree [62]—i.e., the core
taint algorithm is the same as explained in §V-B. For each gRPC
invocation, we computed a unique hash from the requested
function and arguments if any, and hashed it again with the



AST summary (i.e., hash value summarizing the AST) of the
referenced object to get the summary for the resulting object.
Thus, the same AST summary represents the same AST.

For checking DGM-Rules, we used TensorDataset in
PyTorch [17], and LightningModule in PyTorchLightning [22]
as the boilerplate model training APIs. Whenever a variable of
such classes are declared, we checked whether the declaration
follows DGM-Rules as explained in §V-B. To be specific,
when declaring TensorDataset, we checked the argument,
tensors, follows the rules Rp and Ry, and when declar-
ing LightningModule, we checked the implementation of
training_step, which contains the loss calculation, follows
the rule R. Finally, when a Trainer. fit method (i.e., actual
model training) is invoked with the verified TensorDataset
and LightningModule, DL-Oracle returns the benignly trained
model.

We implemented dynamic taint analysis in-house, and static
taint analysis based on PyT [63]. Dynamic taint analysis is
used to trace the runtime operations on data samples, and the
static analysis is used to check the code used in declaring the
LightningModule variable. We implemented the taint analysis
with 1000 LoC in total.

Case Study. An example code for training a model on DLBOX
is illustrated in Figure 6. The code runs as usual, but DLBOX
seamlessly converts the function calls to RPC towards the
objects in safe address space. During the augmentation, ASTs
for the samples are continuously constructed to remember
the histories (i.e., ). Then, the rules Rp and Rys are
checked when the dataset (i.e., TensorDataset) is declared
using the samples (i.e., ). After that, when the model (i.e.,
LightningModule) is declared, the rule Rq is checked by ana-
lyzing the implementation of training_step (i.e., Q). Finally,
invoking trainer.fit method (i.e., line 15) successfully trains
and returns the actual model only when the rules are satisfied.

VII. SECURITY ANALYSIS

DLBoOX can effectively eliminate large attack vectors in
model training by enforcing DGM-Rules. In this section, we
explain how enforcing each DGM-Rule (i.e., Rp, Rq, and Ra)
can prevent the attacks explained in §II-B.

Preventing bit-encoding-attacks. bit-encoding-attacks
do not work under the gradients computation rule Rg and
model update rule Rys. The main assumption exploited by
bit-encoding-attacks is that the attacker can construct an
invertible data flow from the data to the model—e.g., encoding
samples into the model is an identity function which is
invertible. Enforcing R and Ry breaks this assumption. To
be specific, Rg enforces the gradients to be computed through
back-propagation, which is a non-invertible computation [20],
and Ry further makes it impossible to invert by aggregating
all the non-invertible gradients to update the model.

Preventing memorizing-attacks. memorizing-attacks are
prevented by the data augmentation rule Rp and gradients com-
putation rule Rq. In order to launch the memorizing-attacks,
specific target samples should be used extra-ordinarily to

sneakily encode their information to the model. For example,
an attack that biases a model to resemble specific samples
exclusively uses them to obtain the loss value, thereby pe-
nalizing the model for diverging from the samples [9]. This
attack fails under Rp and Rg, since they ensure the loss
value is computed equally from each sample, not prioritizing
or discriminating any specific sample.

Preventing gradient-inversion-attacks. We can prevent
gradient-inversion-attacks under the model update rule
R unless the size of dataset is remarkably small. Since
R enforces the model to be updated by aggregating all the
gradients from each sample, the attacker cannot get a model
which differs by only a single gradient of a sample. Thus, he
cannot retrieve the single gradient also. While the attacker may
obtain the gradients aggregated over all samples even under
R (by comparing two models that differ by a single epoch),
previous works have demonstrated that it is almost impossible
to invert gradients averaged over 10 samples [20].

However, prior knowledge of a sample (e.g., partial features
that are already leaked) can lead to an entire leakage of
that sample. To be specific, the attacker may implement a
filter function on those known features such that only the
(partially known) sample is aggregated to the model while the
others are zeroed out. This strategy still satisfies the model
update rule Ryg (as well as the data augmentation rule Rp),
because all the samples are aggregated (after applying the same
function). Nevertheless, such a leakage would have limited
security impacts only to the samples with known features.

Preventing model-inversion-attacks. Enforcing all Rp,
R, and Ry still cannot prevent model-inversion-attacks
as the attacks are designed to directly retrieve the data from
the (benignly trained) model. However, we want to note that
model-inversion-attacks are known to be not very effective
without auxiliary datasets [19], and enforcing DGM-Rules is still
meaningful to minimize possible attack surfaces. For example,
it would not be possible under DGM-Rules to build a vulnerable
model by training it with only a single sample (and ignoring
all others).

VIII. EVALUATION

In order to clearly demonstrate the practical impact of
DLBoOX, we design an experiment to measure the security
enhancement and performance overhead of DLBOX. To this
end, we answer following research questions:

1) How much can DLBOX prevent malicious Al developers
from leaking the training data? (§VIII-C)

2) How much does DLBOX affect the performance of model
training? (§VIII-D, §VIII-E)

A. Evaluation Setup

We evaluated DLBOX with the scenarios of training the
models across two domains: i) image processing, and ii) natural
language processing. Especially, we performed an in-depth
analysis of security enhancement and performance overhead
of DLBOX on the image processing models. Then, we



Table II: Image processing tasks and datasets for each task.

Task
Dataset

Image classification
UTKFace [66] ChestXray [67], [68]

20,000 15,000
3%200x%200 3x512x512

Image segmentation
SpinalCordMRI [69]

40
1x512x512

Cifar10 [61]

60,000
3x32x32

# of samples
Sample spec.

further evaluated DLBOX on language models to show its
applicability.
We ran all the experiments on the AMD EPYC 7313 CPU

with Ubuntu 22.04 server, which supports SEV-SNP [21].

DLBOX runs on a confidential virtual machine (VM) protected
by the SEV-SNP. We assume the GPU is trusted, and used
NVidia GeForce RTX 6000 which is dedicated to the VM
using PCI passthrough [64]. While we currently assume the
normal GPUs as trusted, we note that employing TEE enabled
GPUs (e.g., NVidia H100 [37], Graviton [65]) does not change
the design of DLBOX.

B. Datasets for Image Processing

We trained image processing models on two different tasks:
1) image classification, and ii) image segmentation. For each
task, we used following datasets.
Image Classification. As shown in Table II, we used three
datasets for image classification as follows: i) Cifar1®, which
consists of the images in 10 classes (e.g., airplane, bird, cat,
etc.) [61], ii) UTKFace, which contains the images labeled with
the age, the gender, the race of the person and the date&time
the picture was taken [66]. iii) ChestXray, which contains
chest X-ray images of the people who have been infected with
Covid-19 or not [67], [68].
Image Segmentation. For image segmentation, we used
SpinalCordMRI dataset, which has 40 MRI images containing
spinal cord, where each image is paired with the segmentation
result marking the precise spinal cord region [69].

C. Security Enhancement

We first evaluate how much DLBOX can prevent the
malicious Al developers from leaking the training data. To be
specific, without DLBOX (i.e., baseline), malicious developers
can easily leak all the training data by runing arbitrary model
training codes. DLBOX limits such data leaks by enforcing
DGM-Rules. Thus, we measure how much DLBOX can reduce
the data leaks compared to the baseline.

Evaluation Metric. In order to clearly demonstrate the amount
of data leaks, we define a leakage bandwidth, which measures
how many training data samples can be leaked from the output
of an untrusted model training code.

BWieakage = the number of training data samples that can
be leaked by one transfer of the trained model.

The lower BWieakage indicates the applied security measure is
more effective in protecting the data as the malicious developer
brings fewer samples at once.

We determine a sample is leaked when a reconstructed image
from the trained model satisfies following two criteria, which
are widely used in academia [19], [70], [20]: 1) an evaluation
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model on the same task should infer the correct output (e.g.,
the label of the original image) from the reconstructed image.
The evaluation model should be different and more advanced
than the target model [19]; and 2) Peak Signal-to-Noise Ratio
(PSNR) between the original image and the reconstructed image
should be higher than a configurable parameter v. PSNR means
the pixel-wise similarity between the original image and the
reconstructed image [19]. We used the PSNR threshold of 15
to ensure minimal similarity between two images.

Evaluation Scenarios. We compare BWieakage With and without

applying the security measures. To this end, we design three

adhoc security measures, i.e., Formatgnforce, ACCUraCyenforce,
and Behaviorgsrce, Where the following one is more advanced
than the preceding one—i.e., following one can prevent the

attack that the preceding one cannot prevent. DLBOX (i.e.,

enforcing DGM-Rules) is the most advanced measure as it can

prevent all the attacks the aforementioned measures cannot
prevent. In the following, we enumerate the scenarios paired
with the possible attacks, in the ascending order of the security.

1) Baseline (leak-as-itself) is the scenario in which no se-

curity measure is applied. Thus, the malicious AI developer
can bring any training data of any size as it is. Other sort
of attacks (e.g., gradient-inversion-attacks [20], [32],
[31]) may also be possible, but it is not the interest of
the attacker as he can already leak any data without any
constraint.

2) Formatensorce (bit-encoding-attacks) enforces the devel-
opers to bring only the data of model format (e.g., files
with pth extension in case of a PyTorch model [17]). Thus,
the malicious developer cannot bring arbitrary data which
does not have the format of model. However, he can still
leak the training data by encoding it into the model and
decoding it after bypassing the security measure.

3) AccuracCygnsorce (memorizing-attacks) enforces the devel-

opers to obtain the model only when it shows a moderate

performance. Thus, the simple bit-encoding-attacks can-
not succeed unless the model, which encodes the data,
actually performs well on the given task. However, the
adversary can stealthily memorize the data into the model

without degrading the performance as explained in §II-B.

4) Behaviorgnsorce (gradient-inversion-attacks) even scru-

tinizes what the developers do so that they cannot inten-

tionally memorize the data while training the model—

i.e., such behavior is totally not related to the model

training [9]. However, the adversary can still launch

a gradient-inversion-attack by utilizing the gradients

obtained while training a model.

5) DLBOX (model-inversion-attacks) prevents all the
above attacks by enforcing DGM-Rules (i.e., explained
in §VII). Nevertheless, the developers can still perform
model-inversion-attacks to leak the data.

Given the attacks available for each security measure, we

found the maximum possible BWicakage by adjusting the follow-

ing settings: 1) the model used to leak the training data (i.e., tar-
get model), and ii) hyperparameters of the attacks. For instance,



Table III: Specification of the trained target models and the evaluation
model for image classification.

‘ Target model Evaluation model
Measurement . . : .
SimpleFC SimpleCNN ResNet18 MobileNet-v2 | EfficientNet-b3
Size (MB) 012~15 46~42 42.6 85 40.8
Test accuracy ~ Cifarl® 40.2 78.5 932 92.5 97.3
per dataset UTKFace 80.1 89.3 88.3 873 90.1
(%) ChestXray 87.0 97.7 99.0 98.8 99.4

Table IV: BWcakage achieved in each scenario of image classification
task. BWieakage Of the attacks not possible in each scenario is set 0. All
attacks were performed with the best set of parameters to maximize
Bwleakage~

Training dataset

Security measure Attack method

Cifarl® UTKFace ChestXray

leak-as-itself 60000 20000 15000

bit-encoding 17060 5685 1853
Baseline memorizing [9] 2470 113 53
gradient-inversion [20] 3.32 2.12 1
model-inversion [33] 0 0 0
leak-as-itself 0 0 0

bit-encoding 17060 5685 1853
Formatenforce memorizing [9] 2470 113 53
gradient-inversion [20] 3.32 2.12 1
model-inversion [33] 0 0 0
leak-as-itself 0 0 0
bit-encoding 0 0 0
Accuracyensforce memorizing [9] 2470 113 53
gradient-inversion [20] 3.32 2.12 1
model-inversion [33] 0 0 0
leak-as-itself 0 0 0
bit-encoding 0 0 0
Behaviorensorce memorizing [9] 0 0 0
gradient-inversion [20] 3.32 2.12 1
model-inversion [33] 0 0 "0
leak-as-itself 0 0 0
bit-encoding 0 0 0
DLBox memorizing [9] 0 0 0
gradient-inversion [20] 0 0 0
model-inversion [33] 0 “0 0

When launching the gradient-inversion-attacks [20], [32],
we found the optimal number of samples that can be averaged
to be leaked at once, while also showing a reasonable
reconstruction accuracy.

Image Classification. For the image classification, we con-
ducted attacks using four different target models as illustrated
in Table III, ranging from a simple fully connected model (i.e.,
SimpleFC) to a fairly complex model (i.e., ResNet18 [23], and
MobileNet-v2 [24]). We summarized the test accuracy of the
correctly trained target models and the evaluation model.
BWieakage i €ach scenario is summarized in Table IV. In
Baseline, the adversary can leak the entire data samples
(e.g., 60000 samples for Cifar1® dataset) with only one trial
(i.e., leak-as-itself) as he can bring arbitrary size of data
without any constraint. Under Formatgnsorces BWieakage depends
on the maximum size of the model that can be transferred,
which is ResNet18 in our scenario. The adversary can leak
almost 20% of the samples within one trial by encoding the
data (i.e., bit-encoding-attacks). Accuracygnsorce Still cannot
protect against memorizing-attacks, leaking tens to thousands
of samples at only one trial. Even under Behaviorgnsorce, the
adversary is able to leak a few samples by partially training
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Table V: Security evaluation on image segmentation models. Accuracy
on each sample is computed as the number of correctly marked pixels
over the number of entire pixels.

Attack method ‘ BWieakage

Target | Evaluation -
Measurement model model leak-as-itself 40
FCN U-Net bit-encoding 40
izi 9 4
Size (MB) 85.3 185 g 1 [20] ~8
Test accuracy (%) | 97.5 97.7 gradient-inversion .
model-inversion [33] 0

(a) Model specifications (b) Achieved Bif1eaxage

the model and performing the gradient-inversion-attacks.
SimpleFC achieves the maximum BWieakage in this attack thanks
to its simple model architecture.

DLBOX achieves the lowest BWieakage as it prevents all the
aforementioned attacks except model-inversion-attacks [33].
However, the model-inversion-attacks [33] (without auxil-
iary dataset) were not able to reconstruct any sample satisfying
our leakage criteria even after 100 trials. Given that current
model training framework allows the developers to leak entire
samples without any restriction (i.e., Baseline), we believe
DLBoOX significantly improves the security of shared training
data.

Image Segmentation. For the image segmentation on
SpinalCordMRI dataset [69], we used FCN [25] as a target model
and U-Net [71] as an evaluation model. The size and the test
accuracy of the models are summarized in Table V-(a). For
the leakage criteria, we used 90% threshold accuracy and 15
for PSNR threshold.

As in the case of image classification, DLBOX achieves
the lowest BWieakage by enforcing DGM-Rules (i.e., shown
in Table V-(b)). The first three attacks (i.e., leak-as-itself,
bit-encoding-attacks, and memorizing-attacks) leak the
entire samples within one trial due to the small size of dataset.
gradient-inversion-attacks, on the other hand, were not
able to reconstruct any sample as the image segmentation has
a large gradient dimension. Nonetheless, we note that DLBOX
is more advanced security measure than just defending against
these attacks as it provides well-defined security guarantees.

D. Performance Overhead

We evaluate the performance overhead of DLBOX while
training a model. In particular, we evaluate its overhead in two
aspects: 1) while interactively debugging the code and tuning
the hyper-parameters, and ii) while actually training the model.

Overhead in Interactive Debugging and Hyper-parameters
Tuning. Most of the model training procedures include de-
bugging and hyper-parameters tuning, which run a small piece
of code, visualize the samples, and monitor the metrics [29],
[72]. DLBOX supports such tasks as it seamlessly runs the
Python scripts given the developers. However, it incurs runtime
overheads due to the underlying operations of DL-Isolate and
DL-Oracle. To be specific, for a single operation requested on a
Proxy variable, it adds the latency for an RPC (which implicitly
includes the effect of compartmentalization), serialization and
deserialization of the data, and taint analysis.
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Figure 7: Measurements of latencies induced by DLBOX.
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Figure 8: Comparison of learning time for each image processing task
and model on Baseline, DL-unsafe, and DLBOX. Prepare denotes
the time used for loading the model and initializing the samples.
Augment denotes the time for augmenting each data sample. Update
denotes the time for computing gradients and updating the model.

To this end, we summarize the latencies induced by each
factor as shown in Figure 7. DLBOX incurs about 3ms
of latency in total for an operation which includes RPC,
serialization and taint analysis (i.e., Figure 7-(a)). The latencies
and overheads on example torch.Tensor operations have
shown the consistent results as illustrated in Figure 7-(b).
However, we want to note that these overheads are imposed
only while interactive debugging and tuning, and they can be
avoided in actual model training as explained below.

Overheads in Actual Training Process. Much of the
time spent on training a model is dedicated to the actual
training process, which involves computing gradients and
updating the model while iterating over the samples. Thus,
we trained the target models in §VIII-C on three different
settings: i) Baseline, which conventionally runs a Python
script using PyTorch, in a normal (unsafe) VM, ii) DL-unsafe,
which uses DLBOX to isolate the address space (by employing
two different VMs) and taint trace the operations, but not
using a confidential VM, and iii) DLB0OX, which employs a
confidential VM (i.e., AMD SEV-SNP [21]) to protect the safe
address space. We trained each model for 10 epochs, using
Adam optimizer [73] with CrossEntropyLoss [74] for image
classification and BCELoss [75] for image segmentation.
Learning times for each pair of dataset, model, and setting
are shown in Figure 8. Overall, DLBOX increases the learning
time by 4% on average, showing maximum 38% overhead when
training SimpleFC on ChestXray. The portion of overhead has
decreased with larger models and datasets, as the training
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Figure 9: Comparison of learning time for training language models
on NLP tasks.

process is GPU-bound, where the GPU spends most of the
time to compute gradients and update model weights. The
processes involved in DLBOX are carried out by the CPU, and
their effect on the learning time is minimal.

E. Performance Overhead on Language Models

In order to demonstrate the applicability of DLBOX, we
further evaluate its performance overhead on language mod-
els. To be specific, we used DLBOX to train the models
on following three NLP tasks: i) sentiment-analysis, which
estimates the sentiment of a given sentence, ii) translation,
which translates a sentence of source language to that of a
target language, and iii) language modeling, which predicts
the most appropriate word following a sentence. Depending
on the tasks, we trained Bert-base [20], Bert-large [26],
T5-base [27], and Gpt2 [28] models, where the model sizes
range from 400MB to 1.3GB as shown in Figure 9-(a). As
a dataset for each task, we used emotion [76] (i.e., 3.4MB),
wmt16 [77] (i.e., 298MB), and wikipedia [78] (i.e., 30GB). We
trained each model for one epoch due to the time limit, but
we think the performance tendency would not deviate as the
number of epochs increases [79].

We illustrate the performance overhead of DLBOX on
language models as shown in Figure 9-(b). DLBOX increases
the learning time by about 2% on average, showing almost
0% overhead when training gpt2 model on wikipedia dataset.
Similar to training image models on DLBOX, the portion of
performance overhead by DLBOX decreases as the size of
model and dataset increase, since the GPU spends most of the
learning time computing gradients and updating models.

IX. DISCUSSION

Generalizing DGM-Rules to Various Learning Techniques.
While DGM-Rules are compatible with typical model training
procedures as explained in §IV, it can be extended for
other learning techniques. Nonetheless, the key observation of
DGM-Rules still holds that the model training procedure is a
statistical process of learning common patterns from a dataset.
As an example, we discuss applying DLBOX on following
two learning techniques: i) resampling [80], ii) between-class
learning [81], and

Resampling [80] oversamples or undersamples the samples
of a specific class to balance the distribution of dataset. It does



not satisfy the model update rule Ry as some samples are
used multiple times in a single epoch. However, we want to
note that resampling also treats each sample equally in the
same class, and Ry can be generalized to ensure the equal
frequency of the samples used in the same class.
Between-class learning [81] mixes two samples in different
classes into one to improve the performance of the model
over noise. It does not satisfy the data augmentation rule Rp
as the samples go through different augmentations depending
on which samples they are mixed together. In order to cover
between-class learning, Rp can be generalized to ensure equal
distribution of samples used in the augmentation procedure.

Trade-offs between Security and Usability of DLBOX. In
order for the Al developers to train their models as usual,
DLBOX allows them to obtain a number of data flows (not
satisfying DGM-Rules) configured by data owner. However, it
also leads to data leaks as they may reconstruct the samples
from the obtained data flows. DLBOX needs to conservatively
consider that the samples related to the obtained data flows
are leaked. Then, the data owner could set the allowed number
of samples that can be leaked.

However, we want to note that there is no need for the
developers to manually observe all samples in the dataset (as
it is the goal of deep learning—i.e., learn from the data on its
own). Typical development procedure would include tens to
hundreds trials of data visualization and metrics monitoring to
debug and tune the models [82]. Thus, it would be enough to

set the allowed number of samples to around tens to hundred.

Furthermore, monitoring frameworks such as TensorBoard [72]
could also be retrofitted to safely expose the computed metrics
(e.g., accuracy) on the models.

Design Considerations for Implementing DLBOX. DLBOX
can be implemented in various ways as long as it can safely
enforce DGM-Rules while training a model. For instance, we
can enforce DGM-Rules before training the model by statically
analyzing the training code, or in runtime as we implemented
in §VI (i.e., compartmentalization and RPC based approach).

We have chosen runtime based approach for i) usability,
and ii) low false positives. First of all, our approach improves
usability for the developers as they can interactively debug and
tune the models as they did on Python REPL [7] or Jupyer
Notebook [58]. Static approach needs to perform an analysis

for every evaluation of the entire code given by developers [83].

Second, runtime based approach has lower false positives
than the static approaches as it is previously studied [83].
Furthermore, it is more difficult for Python’s static analyzer
to achieve low false positives due to the features of Python
language (e.g., dynamic typing, metaprogramming [7], etc).

Potential Side-Channel Attacks on DLBOX. Like other
software frameworks that rely on confidential computing,
DLBOX can be vulnerable to side-channel attacks [47], [84],
[85] as the computing resources are shared between different
entities. In order to mitigate those attacks, DLBOX can employ
both micro-architectural [86], [87], and software-based [88],
[89] approaches, which are widely studied to harden the
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computing infrastructure.

Effect of Auxiliary Dataset. While DLBOX thwarts most of
the attacks raised by untrusted developers, the adversaries with
auxiliary dataset may be able to reconstruct the data partially
through advanced model inversion attacks [19]. However, we
want to note that such model inversion attacks cannot extract
the entire distribution of the target dataset as the attack is also
biased to the auxiliary dataset.

With prior knowledge on the dataset, attackers would be able
to conduct unprecedented attacks to leak the data. However,
we believe DLBOX still provides the crucial protection bar for
securing the training data, and it can be extended to employ an
improved technique such as differential privacy [15] to protect
against further attacks.

X. RELATED WORK

In this section, we describe previous works that focus on
preventing unauthorized data leaks in deep learning, and we
discuss the differences between them and DLBOX.

Federated Learning. Federated learning [13] was proposed
to protect private data in data owner’s end devices, while
the gradients computed from the data are used to train an
Al developer’s model. In addition, recent works [14], [90]
incorporated confidential computing to ensure the integrity of
the developer’s parameter server, thereby preventing gradient
inversion attacks [20], [31], [32].

While federated learning has a similar goal with DLBOX,
it assumes much weaker adversary as he cannot control the
original data but only receives the safely computed gradients.
DLBOX, on the other hand, assumes the malicious developers
have full control over the data, and thus they can construct
purely arbitrary data flows from the data to the model (e.g.,
encoding the data into the model’s weights).

Furthermore, federated learning is limited in its scalability
due to the challenges in synchronizing the model updates
and large communication overhead [13], [91]. DLBOX suffers
fewer scalability issues as it can perform deep learning in the
same machine, which accommodates both the training data
and the model.

Differentially Private Machine Learning. The goal of
differentially private machine learning [15], [92] is to ensure
the statistical indistinguishability of the model with respect
to an individual data. However, they also cannot be applied
to DLBOX as the malicious Al developers can perform
arbitrary model training such as training the model with only a
specific sample or maliciously computing the loss function [9].
Differential privacy needs further researches to be enforced
on such general computations [93], [94], [95]. Additionally,
differentially private machine learning suffers from an accuracy
degradation [15], [92], while DLBOX does not.

Machine Learning with Homomorphic Encryption. Homo-
morphic encryption [96], [97] does not work in DLBOX’s threat
model as the model trained with data owner’s data has to be
eventually revealed to the Al developers. In other words, even if
the model is trained with the homomorphically encrypted data



(by the data owner), the model should eventually be decrypted
to be used by the developers.

Machine Learning with Confidential Computing. Re-
searchers have used confidential computing for secure machine
learning [16], [98], [99], but none of them have solved the
problem of DLB0OX. Ohrimenko et al. [16] proposed oblivious
multiparty machine learning, but they assume the model
training code itself is benign. Chiron [98] works in MLaaS
scenario, where the trained model belongs to the data owner.
However, DLBOX assumes an untrusted Al developers obtain
the model, which is trained using an arbitrary model training
code developed by themselves.

XI. CONCLUSION

In this paper, we present DLBOX, which enables deep
learning on shared training data while preventing data leak-
age through invalid paths. To this end, DLBOX introduces
DGM-Rules based on the key observation that a model training
is a statistical process of learning common patterns from a
dataset. Then, DLBOX redesigns the model training framework
on confidential computing to enforce DGM-Rules-based training.
We implemented the prototype of DLBOX on PyTorch, and the
evaluation results clearly demonstrate that DLBOX enhances
the security with reasonable overheads.
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