
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

PrOS: Light-weight Privatized Secure OSes
in ARM TrustZone

Donghyun Kwon, Jiwon Seo, Yeongpil Cho, Byoungyoung Lee, Yunheung Paek, Member, IEEE

Abstract—TrustZone is a hardware security technique in ARM mobile devices. Using TrustZone, software components running within the
secure world can be completely isolated from the normal world, which ensures hardware-enforced security access control over the
underlying computing resources. In order to support multiple trusted applications, TrustZone runs its own operating system, called the
secure OS, within the secure world. Unfortunately, attackers have been exploiting privilege escalation vulnerabilities in a secure OS, as
reported in most of major secure OSes from product vendors including Samsung, Huawei, and Qualcomm. More critically, as all trusted
applications are running on the same secure OS instance, compromising the secure OS leads to compromising all trusted applications,
rendering the secure OS as a single point of failure endangering the entire TrustZone’s security.
This paper presents PrOS, our mechanism to privatize secure OSes through direct virtualization of TrustZone. PrOS allows each trusted
application to run with its own secure OS such that the secure OS is no longer a single point of security failure. One particular challenge
for PrOS lies in how efficiently to implement software-only virtualization for TrustZone for a practical deployment in real systems despite
the condition that the current ARM architectures do not support hardware-assisted virtualization for TrustZone. As opposed to the
common belief that software-only virtualization is inefficient and sluggish, we have found several common design features inherent in the
secure OS to leverage for optimally tailoring the TrustZone virtualization scheme. We implemented PrOS on a 64-bit ARM development
board. According to our evaluation, PrOS incurs 0.02% and 1.18% performance overheads on average in the normal and secure worlds,
respectively, demonstrating its effectiveness in the field.

Index Terms—Security, TrustZone, Virtualization.

✦

1 INTRODUCTION

The TrustZone technology is a hardware-level approach to
security in ARM systems. TrustZone-based security solutions are
built into an ARM system by chip manufacturers or product vendors
who want to provide secure endpoints and a device root of trust.
TrustZone enforces the security principle of privilege separation
through partitioning all of the hardware and software components
into two worlds: the normal world and the secure world. The normal
world is generally used to execute rich operations (including a
traditional operating system (OS) and its applications) which is
prevented from accessing the secure world. On the contrary, the
secure world is allowed to execute trusted operations (including
a secure OS and its trusted applications (TAs)) running with a
higher privilege than the normal world. Leveraging this higher
privilege, the secure world can exclusively access various trusted
IO devices, enabling sophisticated TAs such as secure key-rings,
mobile payment, and digital right management (DRM).

In principle, TrustZone must be able to ensure secure executions
of multiple TAs merely by running all of them in its own secure OS
within the secure world. Unfortunately, TrustZone maintains only
one secure OS in its secure world, and similar to numerous security
issues plagued in the normal OS, the secure OS is simply a software
product which cannot be vulnerability-free. In fact, several privilege
escalation vulnerabilities have already been reported in major
secure OSes running on commodity devices from various vendors
including Samsung, Huawei and Qualcomm. This situation raises a
critical concern on security guarantees of TrustZone. If any of TA is
adversarial (or compromised), they can launch privilege escalation

• D. Kwon, J. Seo, B. Lee and Y. Paek are with Seoul National University.
• Y. Cho is the corresponding author. (ypcho@ssu.ac.kr)

Y. Cho is with Soongsil University.

attacks using these vulnerabilities to take over the secure OS,
consequently compromising all the TAs running within TrustZone.

A natural approach to address this security concern would
be privatizing the secure OS, that is, assigning each TA its own
individual secure OS, in a way to prevent the secure OS from being
a single point of security failure. From the technical standpoint,
the security anchor indispensable for this approach is a software
layer with the highest privilege in the system, named as the
security access controller (SAC), whose task is to facilitate the
OS privatization by supporting multiple secure OSes that run
respectively in their private execution environments isolated from
each other.

To privatize a secure OS, previous studies have commonly
implemented a SAC such that it can manage secure OSes running
in the normal world, as illustrated in Figure 1. For example, in
TrustICE [1], normal and secure OSes are all generated in the
normal world. When the normal OS requests security services from
a TA, the secure OS private to the TA is initiated to execute. The
SAC lies in the secure world and intervenes with every switch
between OSes. The central role of their SAC is to isolate the
OSes from each other, thereby protecting unauthorized access to a
secure OS from the outside. However, to fulfill this role, TrustICE
mandates that only one OS should run at a time, exclusively
occupying the entire normal world while suspending all the other
OSes, without elaborate access control mechanism. Obviously,
such a strategy to exclusively run one OS at a time might suffer
from low resource utilization particularly in multi-core systems.
As another example, in vTZ [2], the SAC is realized by combining
a hypervisor and the secure monitor in TrustZone, as shown
in Figure 1. It employs the hypervisor to construct virtualized
execution environments in the normal world, each of which
privately hosts a guest secure OS. Thus, unlike TrustICE, vTZ

Hypervisor

(a) TrustICE (b) vTZ

Pvisor

(c) PrOS

Normal World Secure World Normal World Secure World Normal World Secure World

Secure
OS

Secure
Monitor

Secure
OS

Secure
OS

Normal
OSNormal

OS

Secure
Monitor

Secure
OS

Secure
OS

Normal
OS

Secure
OS

SMC call SMC call

SAC
SAC

SAC

Fig. 1: The comparison of designs for secure OS privatization.

is able to execute the normal OS and secure OSes simultaneously
by utilizing the multi-core systems. However, the virtualization
in the normal world inevitably imposes a performance overhead
on the normal applications as well as TAs. Meanwhile, the secure
monitor in vTZ empowers every guest secure OS to have effectively
a higher privilege than the hypervisor so that the secure OSes can
protect themselves from any normal world entities including the
hypervisor. Sadly, such a forceful reversal of privilege hierarchy 1

unavoidably entails a substantial amount of modification to the
existing hypervisor code, thus possibly impeding a wide acceptance
of vTZ in a real system already deployed in the field.

In this paper, we propose an alternative approach for the secure
OS privatization, called PrOS, where our SAC residing in the
secure world manages the multiple instances of the secure OS
privatized for TAs directly in the same world, instead of remotely
in the normal world. To accomplish this in PrOS, our SAC, which
we call Pvisor, virtualizes TrustZone in the secure world, as shown
in Figure1. It is noteworthy that since secure Oses and PrOS
working in the secure world, it does not regulate the operation
of normal world software and does not cause slow down to
the normal OS execution. However, a naive implementation of
TrustZone virtualization would suffer from considerable runtime
overhead as well as high design complexity since we have to
rely on software-only virtualization due to no hardware-assisted
virtualization support in ARM TrustZone. Fortunately however,
we have recently discovered that we can drastically simplify the
TrustZone virtualization to enable light-weight runtime support
for privatized secure OSes in PrOS by exploiting the three
characteristics inherent in the secure OS design listed below.

• The secure OS adopts the request-response execution model
where the request is issued from the normal world (i.e., a
host application) and the response is then processed in the
secure world (i.e., TA). This regularity of secure OS execution
provides PrOS an opportunity to simplify a CPU virtualization
mechanism, relieving us from complex scheduling issues.

• The secure OS uses relatively a small amount of physical
memory than that of the normal OS, which in turn offers
PrOS a better way to implement a memory virtualization
mechanism more efficiently.

• The secure OS always relies on the normal OS to handle
complex I/O operations, and the trusted I/O operations are
never shared among different TAs. This eliminates a need
for PrOS to cope with heavyweight I/O emulations when
virtualizing complex IO services.

We have implemented a prototype of PrOS and evaluated it
while running Android 7.1.2 (with Linux kernel 4.4.71) in the
normal world and OP-TEE 2.5.0 as the secure OS to be virtualized
by PrOS. According to our comprehensive benchmark results,

1. Note in an ordinary circumstance that a guest OS should have lower
privilege than the underlying hypervisor.

CORE

Secure World
(NS-bit=0)

Secure OS

Secure
Monitor

System bus with NS-bit

TZASC

DRAM

Secure
RAM/ROM HUK SMMU

Display
Controller

SMMU

DMA

SMMU

USB
Controller

TAs

SMC call SMC call
EL3

Apps

Normal World
(NS-bit=1)

Normal OS

EL0

EL1

EL2 Hypervisor

Fig. 2: High-level architecture of ARM TrustZone.

PrOS incurs 0.02% and 1.18% overheads in the normal and secure
worlds, respectively. Also to demonstrate practical aspects of PrOS,
we performed extensive use-case studies on TAs, namely bitcoin
wallet (which manages a private key of a user and displays the
bitcoin transaction information), safe vault (which stores private
photos and videos only accessible through TrustZone), and DRM
players (which decrypts and decodes a DRM content, and displays
it to the secure screen). Our experimental results confirm that PrOS
was able to not only run both of these TrustZone-based applications
in a virtualized individual secure OS but also provide seamless user
experiences with any noticeable delays.

The remainder of this paper is organized as follows. §2 provides
necessarily background on TrustZone. §3 describes threat models
of this paper. §4 presents the design of PrOS. §5 describes
implementation details of PrOS. §6 shows use cases of PrOS and
§7 evaluates PrOS. §8 discusses the related work and §9 concludes
the paper.

2 BACKGROUND

2.1 TrustZone

TrustZone is enforced by extending hardware components, oversee-
ing access control across the entire architecture (shown in Figure 2).
First, in the CPU-cores, the highest exception level (i.e., EL3), has
been added to run a secure monitor that is responsible for the
transition between the secure and normal worlds. Both the normal
and secure OSes are running at EL1, both of which can enter
the secure monitor by executing an SMC (Secure Monitor Call)
instruction. The secure monitor then determines the subsequent
security state of the world by setting the NS-bit of the Secure
Configuration Register (SCR) to "1" for the normal world and
"0" for the secure world. NS-bit is attached to transactions and
spread across the system through the system buses, which allows
hardware components of TrustZone to identify the security state
of the transaction and enforce access control based on it. The
system bus of TrustZone can determine the security state of devices

2

Fig. 3: Attack surface in the secure world where multiple TAs are
running.

connected to it. Only the devices configured as secure are allowed
to handle (or generate) secure transactions.

TrustZone supports more specific security configurations,
especially for safeguarding memory subsystems and interrupt
mechanisms. TrustZone Address Space Controller (TZASC) is
a hardware component located in front of the DRAM controller.
Leveraging TZASC, DRAM is logically partitioned into eight
separate regions, each of which is physically contiguous and
configured as either secure or non-secure.

After that, TZASC permits or blocks transactions toward
DRAM according to the region configurations. Generic Interrupt
Controller (GIC) extended by TrustZone allows interrupts to be set
as secure. If interrupts configured as secure were raised, the CPU
core automatically switches to the secure world and receives the
interrupts if they are not masked.

2.2 Memory Management
ARM provides several system registers for controlling its memory
system. System Control Register (SCTLR) is used to turn on
or off the Memory Management Unit (MMU). To translate a
virtual address to a physical one, MMU refers the page table
pointed to by Translation Table Base Register (TTBR). TTBR also
contains a special tag, called the ASID field, which enables efficient
maintenance of consistency between TTBR and TLB when TTBR
is updated. During an address translation, the ASID field is cached
in TLB along with a virtual-to-physical mapping. After that, when
MMU searches the address mappings cached in TLB, it excludes
those having different ASID values than the current ASID, thereby
eliminating the need for TLB invalidations for consistency between
TTBR and TLB.

3 THREAT MODEL

We assume that all software components running in the normal
world (including the normal OS and all host applications) cannot be
trusted—i.e., it is either compromised by attackers or adversarial.
We assume that a secure OS is running in the secure world, which
is a trusted component but it may have security vulnerabilities.
Multiple TAs can run on top of the secure OS to leverage TrustZone
services and each TA is owned by different third-party developers.
Every TA developer has her/his own security and financial interests,
so they do not trust each other. Consequently, a TA does not trust
the TAs owned by other developers. Once TA X is compromised
(or if the owner of TA X is malicious), TA X may attempt to launch
an attack to compromise other TAs [3]. For example, such an attack
can be carried out in the following steps described in Figure 3:
(1) TA X launches a privilege escalation attack (i.e., exploiting a
vulnerability in the secure OS by invoking system calls with crafted

parameters, which grants the secure OS’s privilege); and (2) TA
X runs the malicious code with the secure OS’s privilege to steal
security sensitive information in other TAs.

The availability attacks against secure OSes are beyond the
scope of PrOS. Moreover, we do not consider cache/timing side-
channel attacks [4] and hardware attacks (e.g., cold-boot [5], bus
snooping [6], and rowhammer [7]). Defense techniques against
these attacks can be adopted for PrOS in the future, and thus it is
orthogonal to this paper.

4 DESIGN

In this section, we illustrate the design principles of PrOS (§4.1),
and then describe the overview of PrOS, including its architec-
ture and high-level workflow (§4.2). Next, we introduce PrOS’s
dynamic secure OS management mechanism that allows app
developers to have their own secure OS on-demand (§4.3). Lastly,
we describe our secure OS-aware virtualization mechanism that
facilitates the establishment of the complete isolation boundary
between secure OSes in an optimized way (§4.4).

4.1 Design Principles
The design of PrOS is constructed based on the following principles
for security and performance efficiency.
• P1. Isolated TrustZone Service: The primary goal of PrOS

is to provide the security benefit of TrustZone for various app
developers who may have different security/monetary interests.
Thus, PrOS has to provide privatized TrustZone services for each
developer such that all developers can securely run their own TA
being protected against potential threats from other developers’
untrusted TAs.

• P2. Minimum Changes in Existing Software: The design of
PrOS should be transparent to both the normal and secure worlds
if possible. In other words, it should introduce a minimum change
to all existing software components running in the normal world
(e.g., hypervisors, normal OSes, and applications) as well as
ones in the secure world (e.g., secure OSes and TAs), because
it is always discouraged to entail additional changes in other
existing software components for compatibility reasons.

• P3. Minimize Trusted Computing Base: As PrOS is govern-
ing TrustZone services, it requires additional high privileged
operations controlling TrustZone’s resources. Such additional op-
erations may potentially open more attack surfaces to adversaries,
so PrOS should try to minimize the TCB.

• P4. Low Overhead: Like any other system solutions, perfor-
mance overheads to both the normal and secure worlds incurred
by PrOS should be minimized. Otherwise, system developers will
be reluctant to adopt PrOS, particularly in resource-constrained
devices like smartphones.

4.2 Overview
PrOS provides app developers with a privatized secure OS, thus
app developers are allowed to securely run their TAs even in the
case that other developers’ malicious TAs attempt to compromise
the underlying secure OS by launching privilege escalation attacks.
To realize this, PrOS supports dynamic management of secure
OSes so that secure OSes can be loaded or unloaded at any time
upon a request. PrOS also leverages virtualization techniques and
lets each secure OS hold its own virtualized TrustZone resource,
allowing secure OSes to be strongly isolated from each other and

3

SMC call

Normal OS

Normal World

Secure OS

SMC call SMC call

Secure World

Zygote
Secure OS

(§4.3)

Secure OS-aware Virtualization (§4.4) PVisor

Fork Fork

TA#1APP#3

Legacy TZ Driver
PDriver
(§4.3)

APP#2APP#1 TA#n

Secure OS

Fig. 4: The overview of PrOS.

to be simultaneously activated. In particular, PrOS applies the
secure OS-aware virtualization mechanism, implementing Trust-
Zone virtualization with minimal code size and low performance
overhead.

Figure 4 illustrates the overall architecture. At the core lie the
two software components: PDriver and PVisor. PDriver, placed
within a normal OS (i.e., EL1), provides an interface for host
applications to leverage PrOS. PVisor is implemented in the
secure world (i.e., EL3) to virtualize TrustZone resources, such
that multiple secure OSes isolated from each other can exist
simultaneously.

The workflow of PrOS is as follows: (i) When the system is
booting up, PVisor first initializes a secure OS. We call this firstly
initialized secure OS as Zygote Secure OS, which will be cloned
to dynamically load secure OSes of app developers; (ii) When a
host application in the normal world requests a new PrOS service
(i.e., launching TA in its own secure OS), PDriver forwards the
request to PVisor through SMC calls. Then PVisor dynamically
loads a secure OS by cloning the Zygote Secure OS; and (iii) All
the following communication between the host application (in the
normal world) and the TA (in the secure world) is properly routed
by PDriver and PVisor.

4.3 Dynamic Management of Secure OS

PrOS allows each app developer to run her/his TA with its own
secure OS. Toward this end, PrOS supports dynamic managements
of secure OSes, so that each secure OS can be efficiently managed.
In the following, we first describe how PrOS allocates memory
space for the secure OS (§4.3.1), and loads and unloads the
secure OS (§4.3.2 and §4.3.3, respectively). Then we present how
PrOS supports interfaces to leverage these secure OS management
services (§4.3.4).

4.3.1 Memory Allocation for Secure OS
PrOS loads a secure OS per app developer. This implies that PrOS
would require large physical memory space to store multiple secure
OSes at runtime, where each secure OS’s memory space is isolated
from the normal world and other secure OSes. In the following,
we first describe the limitation of current hardware support (i.e.,
TZSAC), particularly in allocating physical memory space for
secure OSes. Then we describe our approach, which can be divided
into two steps: (1) weakly reserving the physical memory from
the normal world; and (2) coordinating the normal world and
the secure world to securely leverage TZSAC to perform actual
physical memory allocation.
Challenge: Limited Hardware Support for Secure Memory
Allocation. In order to load a secure OS, PrOS should allocate a
physical memory region where the normal world is prevented

from accessing. However, the underlying memory protection
hardware (i.e., TZASC) only supports limited number of physically
contiguous memory regions as explained in §2.1. More specifically,
if physical memory regions are heavily fragmented (i.e., physical
memory pages for each secure OS are interleaved) the TZSAC
mechanism cannot enforce the memory protection for those
memory regions. A naive approach to this problem would be
reserving a large, physically-contiguous memory block that can be
exclusively used for secure OSes, but this would severely decrease
the physical memory utilization for normal OS.
Coordinated Physical Memory Allocation. To address this
issue, PrOS develops a new physical memory allocation scheme
coordinating the normal world and the secure world. This can be
divided into following two steps: (1) physical memory reservation
and allocation by the normal world; and (2) physical memory
layout synchronization between the normal world and the secure
world.

First, the normal world (i.e., PDriver) weakly reserves a large
chunk of physical memory regions during the boot-time. Such
reserved memory regions are allowed to hold movable objects that
can be migrated to other memory location (e.g., user-space pages
and page caches). When allocating the memory for a secure OS
later, PDriver relocates the movable objects to return physically
contiguous memory blocks. As a result, this memory management
scheme enables PrOS to retain good memory utilization (as the
reserved space can be used for other purposes) while minimizing
the fragmentation of secure OSes (as it can return a contiguous
memory region).

Second, once the normal world allocates the physical memory
regions, the physical address (i.e., PAddr) along with its size is
passed to the PVisor. Since the PAddr is determined by the PDriver
and thus cannot be trusted, PrOS always maintains its own physical
memory layout information so that it can verify the validity of
an allocation (i.e., if there is any overlap with existing memory
layout of the secure world or it is properly aligned to be secured
by TZASC). If confirmed to be benign, PVisor starts loading a new
secure OS as we describe next.

4.3.2 Loading Secure OS

After determining the physical memory address, PrOS starts
loading the secure OS onto that address. PrOS employs the Zygote
model [8] to efficiently handle this installation: (1) PrOS initializes
the Zygote OS instance at the early boot stage; and (2) actual
secure OS installation is simply cloning the execution contexts of
the Zygote OS. The Zygote model works with the postulation in
which we can locate the cryptography key and PRNG data in the
Zygote OS instance through static analysis for source code and
build processes.
Preparing Zygote OS. PrOS prepares the Zygote OS when
booting up the system. More precisely, PVisor (1) initializes
the Zygote OS by running its boot sequence, and (2) takes the
snapshot of all physical memory contents, CPU-states, and device
configurations of the Zygote OS, and (3) zeros out all cryptographic
keys in the snapshot (so as to avoid key prediction attacks in the
Zygote model [9]). This prepared Zygote OS will be used to
quickly deploy secure OSes. It is worth noting that, since the
memory contents of Zygote OS is the result of executing the code
verified through trusted booting chain and is not the result of
running any particular TA, its cloned version of secure OSes is
trustworthy to app developers as well.

4

Cloning Zygote OS. PVisor clones the Zygote OS to load a
new secure OS instance. It first hard-copies all the data and
configurations of the Zygote OS to allocated physical memory
regions (pointed by PAddr). Note that, since the code of the
Zygote OS is not different between all secure OS instances,
we does not copy the code, but make the instances share the
single physical copy by using memory virtualization of PVisor
(refer to §4.4.2). After cloning memory contents, PVisor further
refreshes all the cryptographic keys and PRNG data in the instance,
avoiding the cases that the cloned instances are using the same
keys for cryptographic operations [9]. At this time, the update
is implemented by copying a new value from entropy sources
of PVisor. Moreover, in order to correctly authenticate a specific
developer of TAs, the public key of the developer (i.e.,PuKdev) is
injected to this new OS instance such that it can correctly perform
the dynamic TA provision [10], [11] (i.e., authenticate only if the
TA is developed by the corresponding developer at runtime).

4.3.3 Unloading Secure OS
When unloading the secure OS, PVisor wipes all CPU-state and
memory contents stored in the secure OS. In order to reuse this
deleted memory pages, PVisor first configures TZASC to make the
physical memory regions accessible from the normal world. Then
PDriver frees the memory such that the deleted memory pages can
be utilized later.

4.3.4 Provided Interfaces
Based on primitive operations regarding the secure OS management
that we described before, PrOS implements interfaces that host
applications (running in the normal world) can leverage PrOS’s
secure OS supports. We illustrate the provided programming
interfaces (Figure 5) as well as its workflow (Figure 6). Particularly
focusing on host applications’ perspectives (which impacts the
transparency of PrOS), PrOS adds two explicit interfaces for
loading and unloading the secure OS on demand. We note that,
other than this loading and unloading interfaces, PrOS is compatible
with the legacy programming model for TA usage and thus
completely transparent to host applications.
Interface for Loading. At first, host applications can initiate the
loading of a secure OS by sending a request to PDriver through
PD_LoadSecureOS with the PuKdev of the vendor. Upon receiving
the request, PDriver uses its physical memory allocation mechanism
to find available PAddr (as illustrated in §4.3.1). After that, it
forwards the PuKdev and the PAddr to PVisor by invoking PV_-
LoadSecureOS. PVisor then loads a new secure OS cloning the
Zygote OS as well as updating cryptographic keys (as illustrated in
§4.3.2). Finally, PDriver increases the reference count of the secure
OS and completes the loading task.
Interface for Unloading. Similar to the creation, PrOS provides
an explicit interface for host applications to unload their secure
OSes, PD_UnloadSecureOS. It takes PuKdev as a parameter,
PDriver decreases the reference count of the corresponding secure
OS (specified by PuKdev). If the reference count becomes zero,
PDriver invokes PV_UnloadSecureOS so that PVisor can truly
unload and clear the secure OS (as illustrated in §4.3.3). It is worth
noting that availability attacks are not part of PrOS’s threat model
as we have stated in §3 (i.e., any malicious host applications or
normal OS can unload any secure OS).
Transparent Runtime Invocation Support. When host appli-
cations invoke commands to their TAs at runtime, it is possible

Interface Name Parameter Description
host applications à PDriver (ioctl)

PD_LoadSecureOS PuKdev
Loads a secure OS and Increase its reference
count.

PD_UnloadSecureOS PuKdev
Decreases the reference count. If it is 0,
destroys the corresponding secure OS.

PDriver à PVisor (SMC call)
PV_LoadSecureOS PuKdev, PAddr Loads a secure OS.
PV_ActivateSecureOS PuKdev Activates the secure OS in the current core.
PV_UnloadSecureOS PuKdev Unloads the secure OS.

Fig. 5: The interfaces for host application and PDriver.

RET

RET

Host Application PDriver PVisor Secure OS

PD_LoadSecureOS (PuKdev)

Send a command to TA (cmd, args)

RET

Is secure OS with PuKdev loaded? no

PV_LoadSeucreOS (PuKdev, PAddr)

RET

PV_ActivateSeucreOS (PuKdev)

Send a command to TA (cmd, args)

Lo
ad

in
g

U
n

lo
ad

in
g

Fork from Zygote OS

Update crypto-keys

Allocate memory

Increase Ref_count

PD_UnloadSecureOS (PuKdev)

O
p

er
at

in
g

Is secure OS with PuKdev loaded? yes

PV_UnloadSeucreOS (PuKdev)

RET

Free memory

Is secure OS with PuKdev activated? no

Get PuKdev of this host app

Clear all states

Fig. 6: The workflow of host application with PrOS.

that the corresponding secure OS is not currently activated (i.e.,
it was loaded before but the CPU core is currently occupied for
some other secure OS to run a different developer’s TA). In this
case, PrOS automatically activates the corresponding secure OS.
To be more specific, when a host application attempts to send
messages to a secure OS through the legacy TrustZone driver,
PDriver intervenes and ensures that the the target secure OS is
currently activated. In other words, PDriver identifies PuKdev using
the provided context from the host application, and checks whether
the corresponding secure OS is currently activated. If not activated,
PDriver invokes PV_ActivateSecureOS. PVisor activates the
secure OS by setting the current core to use the CPU-state of
the secure OS (see §4.4.1). After that, PVisor returns control to the
PDriver, and in turn the TrustZone driver starts the communication
with the activated secure OS. We note that this runtime invocation
support as well as automatic secure OS activation mechanism is
completely transparent to host applications, which requires no
modification of host application code.

4.4 Secure OS-aware Virtualization
PrOS leverages virtualization techniques to support multiple
privatized secure OS simultaneously. Note that as there is no
hardware support for virtualization in TrustZone, PrOS needs to

5

use software-based virtualization techniques. However, in general
software-based virtualization impose high performance overheads
and complex implementations [12]. To resolve these problems, we
tailor our virtualization methods leveraging the inherent design
characteristics found in the practical secure OSes, such as OP-
TEE [10], ObC [11], [13], and ANDIX OS [14]. In particular, we
focus on following three main observations:
O1. Request-response model:. The secure OS adopts the request-
response execution model, where the request is made from the
normal world (i.e., a host application) and the response is performed
by the secure world (i.e., TA). This is mainly due to the role of a
host application and its TA: TAs are not designed to be a standalone
program, but a host application drives the execution of TAs. As a
result, the secure OS delegates the scheduling responsibility for
TAs to the normal OS. Specifically, when a host application calls its
TA, the secure OS and the TA run on a single "calling" core. This
allows PrOS to take a lightweight CPU virtualization mechanism,
intentionally omitting complex scheduling support.
O2. Small memory footprint:. The secure OS only holds a
few memory pages, orders of magnitude smaller than a normal
OS. Thus PrOS’ memory virtualization can take a simple yet
efficient approach, different from traditional memory virtualization
techniques.
O3. Offloaded I/O operations:. The secure OS relies on the
normal OS to provide complex I/O services such as file I/O and
networking because the lightweight secure OS is more desirable
due to its strong and high security privilege. This allows the secure
OS to exclude the implementation code bases including disk driver,
network driver, file system, and socket. Since such outsourcing
should be performed securely, secure OS typically encrypts the data
using cryptographic keys. This allows PrOS to avoid heavyweight
I/O emulations to virtualize complex IO services.

In the following, we describe how PrOS performs software-
based virtualization, namely CPU (§4.4.1), memory (§4.4.2), and
device virtualization (§4.4.3), while each virtualization mechanism
is driven by aforementioned observations.

4.4.1 CPU-State Virtualization
PrOS simplifies the CPU virtualization by leveraging the character-
istic of the secure OS for request-response execution model (i.e.,
O1). Traditional virtualization techniques virtualize the CPU for the
following two general operational roles: computational resources
(i.e., scheduling) and CPU states. From the PrOS’s perspective,
however, it is not required to virtualize computational resources.
Due to the request-response execution model, the CPU core to be
scheduled is determined by the normal world and the secure OS
will voluntarily yield the CPU core when the timer interrupt of
the normal world occurs 2. This in fact significantly simplifies the
implementation of the CPU virtualization, which in turn minimizes
the TCB of PrOS (e.g., the scheduler of Xen hypervisor (v4.10) [15]
is about 4K SLOC).

PVisor virtualizes CPU-states per CPU core by saving and
restoring CPU-states when exiting from or entering to secure OSes,
respectively. PVisor employs two different save/restore schemes
depending on how the context switching of the secure OS occurs.
First, in the case of the world switch (i.e., from the normal world
to the secure world or vice-versa), PVisor saves and restores all

2. A compromised secure OS may be able to carry out the availability attacks
seizing the CPU core, but this security concern beyonds our threat model
mentioned in §3.

SMC
Handler

per-core
CPU-state

save or
restore

Normal
OS

Normal World Secure World

Secure
OS

Secure Monitor

SMC
Handler

per-core
CPU-state

Normal
OS

Normal World Secure World

Secure
OS

PVisor

Secure
OS

save or
restore

save or
restore

save or
restore

save or
restore

(a) The legacy TrustZone (b) PrOS

Fig. 7: Save and restore of CPU states in the legacy TrustZone and
Playground

CPU-states only when world switchings occur. Second, in the case
of temporal exits from secure OSes to PVisor (i.e., for memory
virtualization), PVisor only saves a partial set of registers (i.e.,
general registers and the program counter, the stack pointer), and
the process state. Since such temporal exits do not entail the world
switching, PVisor can be certain that values in unsaved registers (a
number of system registers such as SCTLR and TTBR) will not be
changed, thereby optimizing the performance.

4.4.2 Memory Virtualization

PrOS requires to virtualize the memory of secure OSes for both
security and compatibility reasons: In terms of security, PVisor
should take complete control over their memory space such that
secure OSes will be completely isolated and protected from each
other. In terms of compatibility, PVisor should be able to offer
every secure OS to the same virtual memory layout, as all secure
OSes are cloned from the Zygote secure OS.
Trap-and-Emulate for MMU-related Instructions. There are
various privileged instructions related to MMU, for which Secure
OSes have to execute under the supervision of PVisor. This
supervision is required for the following two reasons: (1) secure
OSes will behave abnormally as it may not follow the underlying
virtual memory semantics imposed by PVisor (e.g., TLB invalidates
and virtual-to-physical translation); and (2) even worse, secure
OSes may circumvent the memory virtualization of PVisor (e.g.,
MMU on/off, TTBR and TCR updates, and global write-execute-
never) for disabling isolation between secure OSes.

Therefore, PVisor employs a trap-and-emulate techniques [16]
to deprive secure OSes of directly executing MMU-related instruc-
tions. Specifically, when preparing Zygote OS instance (§4.3.2),
PVisor scans through the entire code instructions to find privileged
instructions. For each privileged instruction found, PVisor replaces
it with a trap instruction (i.e., SMC calls) such that PVisor
can securely emulate the functionality of the original privileged
instruction. As a result, since all secure OSes are forked from
Zygote OS, all privileged instructions are completely delegated by
PVisor.
Page Table Virtualization. Similar to MMU-related instructions,
PrOS should have full control over page table of secure OSes in
order to prevent secure OSes from accessing to an isolated memory
region assigned to each of them. This also enables PrOS to enforce
write-execute-never policy, thwarting secure OSes from injecting
privileged instructions arbitrarily 3.

To give PrOS the exclusive control authority over page table
of secure OSes, we employs a page table virtualization technique.

3. It does not hinder the normal execution of secure OSes because in most
cases secure OSes have already applied the write-execute-never policy to their
code for the same reason.

6

level2/3 tables

Secure OS

PVisor

(read-only)
Instrumented

Exception Vector TTBR update

TLB invalidate

level1 table

(read/write)

level2/3 S-tableslevel1 S-table
dirty-list

Update
level1 S-table

Update dirty
level2/3 S-table

Change to
read/write

Add to dirty-list

Data abort

TTBR with ASID

❶

❷

❸

❹

❺

Fig. 8: The page table virtualization of PrOS based on the shadow
paging.

Secure OSes are only allowed to access to virtualized page table so
that even when being compromised they cannot manipulate physical
page table directly managed by PrOS. To virtualize the page table,
PrOS uses software-based shadow paging scheme [17]. Secure
OSes manage their own page tables as usual, and PVisor creates
shadow page tables (SPTs) that MMU will really refer by reflecting
the secure OSes’ page tables. In fact, a shadow paging scheme is
not a common choice for modern memory virtualization schemes
due to its inherent performance bottleneck in synchronizing the
entire page table with SPTs at certain events (i.e., Translation Table
Base Register (TTBR) update, TLB flush, and translation fault).
However, we found that secure OS only holds a few page table
entries, orders of magnitude smaller than a normal OS (i.e., O2),
and thus such performance bottleneck becomes endurable in PrOS.

PrOS further optimizes the shadow paging scheme through
minimizing the SPTs to be synchronized (illustrated in Figure 8).
In other words, in the beginning PrOS marks level 2 and 3 of
SPTs as read-only (1). When secure OS attempts to update the
page table, PVisor receives the data abort exception (2)4. Then
PVisor will add the subjected memory page (i.e., the memory page
containing the SPT to be updated) to the dirty-list (3), and enable
the write permission of the memory page such that any further
update will not be redirected to PVisor (4). Lastly, when there are
TLB invalidate or TTBR update, PVisor synchronizes its page table
using secure OS’s SPT only specified in the dirty-list (5). In other
words, SPTs not included in the dirty-list have never been changed,
so those do not need to be synchronized. Note that PrOS does not
perform this optimization for Level 1 SPTs to avoid modifying the
secure OS (P4). Level 1 SPTs are much smaller than the page size
(4 KB), so the subjected memory page is shared with other non-
SPT data. Thus, PrOS cannot retrofit the efficient write monitoring
mechanism based on the page table permission without modifying
the implementation of the secure OS.

Moreover, PVisor also optimizes costly TLB invalidations by
leveraging ASIDs. In particular, PVisor ensures that each secure OS
uses different ASIDs when updating TTBR. Therefore, when there
is context switching, PVisor does not need to invalidate TLB to
prevent abnormal memory accesses through cached TLBs between
different secure OS instances.

4. When instrumenting the code for trap and emulate for privileged instruc-
tions, PVisor also inserts SMC calls into the exception handler of secure OSes
to trap data abort exceptions.

4.4.3 Device Virtualization

PrOS needs to virtualize devices since devices are now shared
across multiple secure OSes. In general, device virtualization is
often considered to be the primary cause of raising the complexity
of virtualization. In the case of virtualizing secure OS, however,
these OSes handle file I/O and networking by relying on the
normal OS (i.e., O3), and thus PrOS does not need to virtualize
such complex disk and network devices. Also, considering the
common use-cases, trusted I/O devices should not be concurrently
accessed (e.g., trusted display or fingerprint sensor should not be
shared or concurrently accessed for its trustworthiness). Therefore,
PrOS does not need to cater complex cases where more than one
secure OS tries to use the same trusted I/O device at the same time,
avoiding PrOS to employ an additional management module to
guarantee fair uses of trusted I/O services.

Trusted I/O Devices. For trusted I/O devices, PrOS adopts the
direct I/O mechanism [18] that assigns devices to secure OSes
to use directly. To be more specific, PrOS’s direct I/O scheme
features following two key aspects: First, PVisor utilizes System
MMU [19] (corresponding to IOMMU in x86) to limit the memory
accessibility of the devices to the memory of the currently running
the secure OS. This prevents potential DMA attacks. Second, PrOS
saves and then restores the device’s states per secure OS, such
that each secure OS can seamlessly use the device even after other
secure OS used the device.

By default, an activated secure OS is not allowed to access
trusted I/O devices. When a secure OS attempts to use a device,
PVisor promptly initiates the following device assignment process
before the secure OS takes the control. To be more specific, PVisor
first restores the device configuration status of the current secure OS
(i.e., values in memory-mapped registers). Then PVisor properly
configures System MMU to prevent DMA attacks. When the secure
OS stops using a device or other secure OSes preempt the device,
PVisor saves the device configuration for future restoration. This
saving and restoration method appeared feasible for the devices
used in our experiment, but it should be applied carefully in some
devices holding hidden internal states. For example, LCD controller
has a buffer between the frame buffer in DRAM and the actual
screen, which is likely to hold a part of sensitive screen data.
We can find a similar case from UART and its internal buffer.
To prevent buffered sensitive data from being leaked to other
secure OSes, they must be cleaned before handing over the control
for the devices between secure OSes. Note that the saving and
restoration method can only be implemented in a device-specific
manner because there is no common way to save and restore device
states. Fortunately, the amount of effort to develop the method
may be acceptable as many trusted I/O devices, such as screen
and fingerprinting sensor, have simple structure relatively. Also,
even if devices are complicated, we believe that we can alleviate
the difficulty with more sophisticated methods [20] that facilitate
the easy saving and restoring of the internal state by referring the
power management code performing the similar tasks for device
suspension and restoration.

Security Resource Control Devices. PrOS emulates security
critical devices (e.g., as mentioned in §2.1, this includes extended
system bus, TZASC, and GIC), each of which contributes to
partition the resource between the normal and secure world. Secure
OSes try to configure these devices so as to protect their own
security resources. In this case, PrOS should not allow the direct
I/O scheme for secure OSes because these devices constitute the

7

Secure OS #1

Interrupt VectorInterrupt Vector

Secure OS #2

PVisor

GIC TZASCGPIO UART LCD ctr

vGIC

vTZASC

vGIC

vTZASC

Fig. 9: Assignment and emulation for device virtualization.

primitive security guarantee of TrustZone as well as of PVisor.
Toward this end, PVisor creates the virtual devices corresponding
to each of those. Then it leverages trap-and-emulation mechanism
(through invalidating memory mapped regions of those devices) to
mediate all secure OSes’ access to the devices. Finally, it emulates
each device’s functionality in light of security.
Interrupt Handling. By default, PVisor forces all interrupts
toward the secure OS to be intercepted by setting IRQ and FIQ
bits of SCR. If an interrupt is received, PVisor identifies which
secure OS is responsible for the interrupt according to the device
emulation and assignment status. If the secure OS is activated in
the current core, PVisor instantly injects the interrupt to that active
secure OS. Otherwise, PVisor first activates the destined secure
OS before injecting the interrupt. After the secure OS finishes the
interrupt handling, PVisor reactivates the previous secure OS.

5 IMPLEMENTATION

The prototype of PrOS was developed targeting 64-bit ARM.
In this architecture, ARM provides the reference secure world
software, called ARM-TF (Trusted Firmware), including a series
of bootloaders with a secure boot mechanism, the power state
coordination interface. In particular, the ARM-TF has a modular
design in implementing a secure monitor in order to be collaborative
with various secure OS developers.

PVisor is implemented based on the secure monitor of the
ARM-TF by reusing the existing code and data structure (e.g., for
per-core CPU states) and a build-system. As a result, PVisor was
implemented in about 3K LoC, showing that PrOS has minimized
the increase of TCB.

PDriver is implemented based on open source implementations
of the TEE subsystem [21] and the CMA (Contiguous Memory
Allocation) [22]. First, PDriver adds new APIs for PrOS and
intervenes the existing APIs toward the legacy TZ driver upon the
TEE subsystem, working as an intermediate proxy between host
applications and the legacy TZ driver. Second, PDriver implements
its physical memory allocation mechanism (§4.3.1) based on
the CMA. PDriver tuned the CMA so as to prevent memory
fragmentation considering TZASC’s limited memory protection
capability.

6 CASE STUDY

We believe the protection provided by PrOS has practical impacts
in running various trusted applications. To clearly demonstrate
the feasibility of supporting these applications, we implemented
and further thoroughly tested following three realistic applications
heavily leveraging TrustZone’s security guarantees: DRM player,
Bitcoin wallet and safe vault. For the more realistic case study, these

applications are developed to use trusted I/O devices (i.e., screen).
Note that, the screen is also used in the normal world. In other
words, when the TA is terminated, the secure OS returns a control
for the screen to the normal OS. These applications contain security-
critical parts, which handles sensitive data, such as copyrighted
contents, financial data, and personal information. As compromises
of these applications can lead to critical security issues, the
app developers strive for strong security protection by placing
the security-critical part in the isolated execution environments
provided by the secure OS. In applying this protection method,
however, there are two issues that may raise app developers’
security concerns. First, the secure OS beneath their TAs can
be compromised by other developers’ malicious TAs launching
privilege escalation attacks. Second, in many cases, device vendors
disallow dynamic TA installation in the secure world (mainly
because of the first issue). Thus, it is difficult for the app developers
to install and execute their TAs in the secure world. We note that
PrOS can resolve the above-mentioned issues by allowing every
app developer to privatize their own secure OS and run their TAs
in fully isolated from each other at OS-level.
DRM Player. A DRM player is an application that is responsible
for playing the copyright-protected contents for users. To imple-
ment a DRM player, as DRM contents are delivered as encrypted,
we directly forwarded the contents to the TA (implementing the
DRM player). Then we implemented the TA as follows: (1) It
decrypts and decodes the DRM contents only in the secure memory,
which is located within the privatized secure OS, such that other
TAs cannot access this secure memory; and (2) It writes extracted
raw video frames to the secure screen buffer to be displayed to the
user through a trusted screen. Here, since PrOS supports trusted
I/O (while ensuring the exclusive access), this screen buffer writing
can be trusted in the same way as running the single secure OS.
Bitcoin Wallet. A Bitcoin wallet is an electronic payment
application that supports peer-to-peer tradings. To harden this
application, we developed the TA performing the following tasks:
(1) authenticates the user through the password typed using trusted
I/O; (2) signs transactions with a private key stored in a secure
storage; and (3) reports the transaction results to the user through a
trusted screen. We were able to successfully implement all of the
aforementioned tasks, since PrOS executes TA on the privatized
secure OS holding its own exclusive memory and supporting both
trusted I/O and file I/O (i.e., secure storage).
Safe Vault. Mobile devices often store a variety of personal
contents such as photos and documents. A safe vault is an
application that protects these sensitive contents by only storing the
encrypted contents in an isolated storage (such as TrustZone). For
this application, we developed the TA that temporarily decrypts the
contents only when there are authorized accesses (i.e., PIN checks)
and displays it to the user through a trusted screen. Similar to the
case of the DRM player, we were able to support this TA in the
privatized secure OS using PrOS, augmenting the security level for
the safe vault.

7 EVALUATION

This section evaluates the prototype of PrOS by measuring
performance overhead and analyzing security. Experiments have
been conducted on the versatile express V2M-Juno r1 platform [23],
which has Cortex-A57 1.15 GHz dual-core processor and Cortex-
A53 650 MHz quad-core processor in a big.LITTLE architecture

8

and 6 GB of DRAM. We used Android 7.1.2 with Linux kernel
4.4.71 as the normal OS, and OP-TEE 2.5.0 [10] as the secure OS.

7.1 Achieving the Design Goals
We study how well PrOS satisfies its design principles listed in §4.1.
First, PrOS achieves P1 (i.e., isolated TrustZone service) as it
strictly isolates each secure OS from others using software-based
virtualization techniques. Second, PrOS satisfies P2 (i.e., minimum
changes in existing software), as it is compatible with the existing
software. In the normal OS, PrOS only requires to add PDriver
to it because PDriver is the device driver and can be co-located
with the unmodified legacy TrustZone driver. In the case of the
host application, PrOS only adds interface calls for loading and
unloading the secure OS, but it does not affect the programming
model for other API calls. In the secure world, PrOS implements
Pvisor solely at EL3, so it is entirely transparent to the secure
OS (running at EL1). In the case of the secure OS, PrOS inserts
several SMC calls for trap-and-emulate in privilege instruction or
to the exception handler, but does not make any significant code
modifications. PrOS satisfies P3 (i.e., minimize the TCB) as its
TCB only includes PVisor where its implementation complexity is
3K LoC (§5). We note that this size is only 3% of OP-TEE OS.
Such a small code base is attributed to the fact that unlike the secure
OSes having the responsibility for implementing all functionality
to run TAs (i.e., management for TA, dynamic memory, peripheral
devices, file/network, etc), PrOS only focuses on providing security
to secure OSes by separating execution environments. Compared
to the commodity hypervisor, PrOS is still much smaller (i.e.,
Xen hypervisor is 8,477k LoC [24] and NOVA microhypervisor
is 36k LoC [25]). We deem that it is due to the secure OS-aware
virtualization of PrOS that reduces the implementation overhead
for CPU/memory/IO virtualizations. It is worth noting that PDriver
is not part of the TCB, as all of its runtime behaviors are strictly
verified by PVisor. PrOS meets P4 (i.e., low overhead): PrOS incurs
near-zero overhead to the normal world execution as we further
describe in the next subsection (§7.2). PrOS involves moderate
performance impacts on the secure OS (1.18% on average) due to
the virtualization.

7.2 Performance Evaluation
To measure the overhead of PrOS, we experimented with following
two cases: (i) Native, which denotes the traditional case that a
single secure OS runs within TrustZone; and (ii) PrOS, which
denotes the case where two secure OSes run using PrOS. In both
cases, we used OP-TEE OS as secure OS.

First, we examined how efficiently PrOS and OP-TEE OS can
manage secure OSes and TAs. To understand this, we measured
the execution time of the management APIs provided by PrOS and
OP-TEE OS, respectively. Second, we investigated the performance
impact of PrOS to the system. Specifically, we ran the the official
test suits of OP-TEE and several synthetic application benchmarks
to understand the performance degradation of the TAs and the
normal OS. We repeated these experiments 20 times and presented
averaged results.
PrOS APIs. As described in §4.3.4, PrOS newly provides
two APIs for host applications and three APIs for PDriver. To
understand the performance impact of these APIs, we implemented
a host application that invokes these APIs, and measured the elapsed
time of each API call in the application and PDriver, respectively.
While these experiments were conducted using synthetic host

API name time(µs)

PD_LoadSecureOS 11799.5
PD_UnloadSecureOS 10383.0
PV_LoadSecureOS 9676.2
PV_ActivateSecureOS 3.1
PV_UnloadSecureOS 9686.8

TABLE 1: Elapsed time of PrOS APIs

API Name time(µs) OverheadNative PrOS

InitializeContext 41.9 42.7 1.8%
FinalizedContext 12.2 12.1 -0.4%
OpenSession 15738.0 15620.4 -0.7%
CloseSession 5482.4 5508.1 0.5%
AllocateSharedMemory 21.9 21.9 0.0%
RegisterSharedMemory 21.2 21.5 1.4%
ReleaseSharedMemory 11.6 11.7 0.9%
InvokeCommand 96.2 109.2 13.5%

TABLE 2: Performance of GlobalPlatform Client APIs

applications, we believe the experiments are reasonable as the
APIs are designed to perform the same task regardless of the host
applications. The results are shown in Table 1. The elapsed time of
PD_LoadSecureOS, which loads a secure OS, is only 1.5% of the
real boot time of OP-TEE OS, showing the effectiveness of Zygote
secure OS based installation as presented in §4.3. Compared to
the APIs of OP-TEE OS (Table 2), PrOS’s APIs in loading and
unloading a secure OS are noticeably slower (about 100 times) than
InitializeContext and FinalizeContext APIs that manage
the connection of host application and TA in OPTEE. However,
since these APIs are rarely invoked (so as to manage its secure
OSes) and even very short compared to the startup time (2000ms
on average) of most of normal applications [26], we believe this
slowdown would not severely impact the practical use-cases of
PrOS.

OP-TEE APIs. OP-TEE OS adopts the standard API specification
published by GlobalPlatform [27], [28]. The specification defines
two sets of APIs: GlobalPlatform client APIs, which are invoked
by host applications to manage TAs; and GlobalPlatform internal
core APIs, which are invoked by TAs to use OS services. As PrOS
runs secure OS on top of PVisor, it would incur overheads for
both of these API groups. We measured such overheads (shown
in Table 2) in the same way as in the PrOS’s APIs. We found
that InvokeCommand showed noticeable overheads compared to
other APIs. This is because, due to the implementation choices
of OP-TEE OS, InvokeCommand involves the full page table
creation, which in turn causes the sync operation of the shadow
paging scheme in PrOS. We would like to point out that this
slowdown would not severely impact the overall performance of
TrustZone’s service. The actual computation/processing time (such
as encryption, decryption, and signing operations performed by TA)
will be a dominating factor for the performance as it takes much
longer than the communication time impacted by InvokeCommand.

The GlobalPlatform internal core APIs includes a various set of
APIs, including trusted core framework APIs, trusted storage APIs,
cryptographic operations APIs, time APIs, and TEE arithmetic
APIs. As shown in Table 3, PrOS only introduces lightweight
overhead (2.1% in the worst case), suggesting that PrOS would be
efficient enough to handle such various tasks.

Performance Impacts on TA. As PrOS intervenes all operations
of the secure OS, it may introduce a performance penalty on TAs.

9

Name time(µs) OverheadNative PrOS

Trusted Core Framework API 15912.4 16035.0 1.8%
Trusted Storage API 8615.2 8640.2 2.1%
Cryptographic Operations API 6953.0 7142.4 1.8%
TEE Arithmetic API 2950.0 3008.0 0.0%
Time API 3248.0 3248.0 1.6%

TABLE 3: Performance of GlobalPlatform Core APIs

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

Fig. 10: Performance Overhead of xtest. The suffix "bench"
means that the associated test group performs a stress test.

Benchmark time(µs) OverheadNative PrOS
GeekBench 3.4.1

single core
muti core

412.3
1524.0

408.0
1524.3

-1.0%
0.0%

Vellamo 3.2
productivity
metal

3886.2
1194.2

3919.8
1199.8

0.9%
0.4%

Antutu 6.0.1 28990.3 28941.2 -0.2%

TABLE 4: Performance overhead on the normal world

To understand this performance aspect, we ran official test suite
of OP-TEE OS, xtest [29], which includes various tests. More
specifically, xtest consists of a main host application and many
TAs that are implemented to perform each test. To clearly represent
the results, we grouped 39 tests into eight groups and presented
the performance overhead per group (shown in Figure 10). Overall
PrOS imposed 1.18% on average (ranging from 0.29% to 3.84%),
implicating that PrOS would not introduce noticeable performance
overheads to typical TA workloads.
Performance Impacts on Normal World. One of key advantages
of PrOS is that it never causes performance degradation in the
normal world, as its virtualization is carried out in the secure
world. This advantage is especially important considering the fact
that mobile devices are mostly operating in the normal world. To
demonstrate this, we experimented with three synthetic benchmarks,
such as GeekBnech, Vellamo, and Antutu, that measure the overall
system performance. As shown in Table 4, PrOS imposes negligible
overheads, demonstrating that PrOS does not slow down the normal
world to privatize secure OS.

7.3 Case Study Evaluation
As described in §6, we performed a series of case studies on the
DRM player, the Bitcoin wallet, and the safe vault. The case studies
suggested that these applications can be hardened by partitioning
their security critical parts into TAs and securely running in secure
OSes fully supported by PrOS. In this subsection, we study the
performance aspects of these case studies.

In the DRM player, we measured how fast the TA is to
decode one frame of the video clip and copy to the secure

From
Normal world

From
Secure world

Secure OS 12 70
PVisor 3 10

TABLE 5: The number of external interfaces of secure OS and
PVisor.

frame buffer. In the experiment, we used the video clip of the
resolution of 360p. The result showed that, in the big cores, the TA
finished its task in 14.15 ms and 14.17 ms, respectively, without
or with PrOS. In the little cores, the TA showed 30.29 ms and
30.36 ms, respectively, without or with PrOS. We believe this
results advocates the efficiency of PrOS, as it showed near-zero
overheads. We additionally noticed that, if the same task of TA
is implemented in the normal world, it can run much faster: 9.43
ms in the big cores and 24.88 ms in the little cores. Based on
our analysis, we found that this is because of the request-response
model of the secure OS. While the TA is running in the secure
world (including both before and after PrOS), the execution is
often interrupted by unexpected interrupts, such as timer interrupts.
To handle the interrupts, each of them should be transferred to
the normal world, frequently incurring the costly world switches.
We believe this is not the limitation of PrOS, but the limitation of
TrustZone, which can be mitigated in the future by minimizing
the world switch latency between the normal world and the secure
world.

In the Bitcoin wallet, we measured the execution time of the
tasks of its TA: the transaction report task. According to our result,
the execution time showed 100.1µs and 100.8µs (without or with
PrOS, respectively). These measurement results also show the
efficiency of PrOS as PrOS showed almost no different results
from non-privatized secure OS.

In the case of the safe vault, we measured the time taken to
decrypt an encrypted image file (4.1 MB) and further display
through trusted I/O. The result showed 91.5µs and 92.1µs,
respectively, when PrOS is deactivated and activated. This also
confirms the efficiency of PrOS.

7.4 Security Evaluation
The primary goal of PrOS is to allow app developers to execute
their TAs securely. The key idea of PrOS to achieve this goal is
to privatize secure OS to let each app developer have their own
isolated execution environment. In this subsection, we first discuss
the possible attack vectors and the security guarantees provided by
PrOS for each vector, and second perform a comparison with the
legacy TrustZone in terms of security.

7.4.1 Possible attacks against PrOS
First, adversaries may attempt to attack PVisor from the normal
world (i.e., PDriver). Since PrOS assumes that PDriver can be
adversarial or compromised, PDriver can launch various attacks
against PVisor. More specifically, attackers may attempt to exploit
a vulnerability in PVisor (such as memory corruption or semantic
vulnerabilities [30]) through invoking the SMC call with crafted
parameters. We argue that spotting a vulnerability in PrOS would be
difficult as PVisor is small (i.e., 3k LoC). We acknowledge that this
may be a strong enough argument, and PrOS may leverage memory-
safe languages or verified kernel approaches [31] to implement
PVisor in the future.

Second, attackers may attempt to exploit PVisor from the secure
world (i.e., TA). Because PrOS provides secure OSes for individual

10

application developers, attackers can install a TA inside the secure
world via PrOS. If they know a vulnerability in the secure OS, they
can compromise the secure OSes through a well-known privilege
escalation attack. However, even though the attackers take control
of a secure OS and have an ability to execute instructions at
Secure EL1, it is difficult for them to negatively affect other secure
OSes due to the CPU virtualization technique of PVisor. There
remain no security-critical privileged instructions in the secure OS
because all of them were replaced with SMC calls. Also adding
new instructions to the secure OS and accessing the memory
region of PVisor from the secure OS are also prevented completely.
Therefore, after acquiring the execution context of the secure OS,
the attackers should compromise PVisor, similar to the attack by
PDriver, but their attempts would be blocked as we have mentioned
before.

7.4.2 Comparison with the legacy TrustZone
We admit that the legacy TrustZone that runs all TAs in a single
secure OS also can ensure such isolated executions of each TA as
long as the secure OS remains intact and safe against attackers.
However, protecting secure OS is much harder than protecting
PVisor in terms of the size of attack surface. We reasonably
assume that the attack surface of the secure OS and PVisor each
will be expanded in proportion to the number of their external
interface, such as system calls or SMC calls, that can be used to
inject malicious payloads and the size of their code base that is
directly connected to the possibility of vulnerabilities being existed.
Table 5 summarizes how many external interfaces are implemented
for PVisor and the secure OS, respectively. Consequently, we
can observe that PVisor has 74.1% smaller number of external
interfaces than the secure OS, and from this fact it would be
difficult for the attackers to inject malicious payloads into PVisor
than into the secure OS. In addition, the code size of PVisor (3k
LoC) is only 3% of that of the secure OS, thus creating exploitable
payloads in PVisor would be more difficult than in the secure OS.

7.5 Limitations and Discussion
PrOS focuses on providing TAs a separate secure OS to ensure
isolated execution. To accomplish such a secure OS privatization,
PrOS takes advantage of the Zygote mechanism and the virtualiza-
tion mechanism. However, the current implementations of these
mechanisms lead to some limitations PrOS is facing.
More Precise Trap-and-Emulation. To conduct the trap-and-
emulation, PVisor replaces all privileged-instructions in the secure
OS’ code to SMC calls during the boot process. For correct
replacement, PVisor needs to be able to recognize where the
instructions are located. Luckily, because secure OS is implemented
putting a priority on security, PVisor can easily find the code
page by identifying the executable-bit from the page table of the
secure OS. However, it may be less precise about certain code
pages where instructions and constants coexist. Although problems
related to such code-constant mixed pages have not been observed
in our experiments, we may need to improve the precision of the
instruction replacement with the help of well engineered dynamic
binary instrumentation systems [32].
No Support for Dynamic Code Loading. Holding the exclusive
control over the page table of secure OSes, PVisor constantly en-
forces the write-execute-never policy. After being forked, therefore,
the secure OSes are not allowed to load a new module dynamically
or to perform self-modification to their code. Fortunately, we may

be able to relieve this limitation by thoroughly applying the trap-
and-emulation technique on the newly modified or added code
page.
Homogeneous Secure OS. Thanks to the Zygote mechanism,
we greatly reduce the loading time of secure OS when a new
TA is spawned. However, since all secure OSes are loaded by
being forking from the same secure OS created in the boot time,
this mechanism results in all secure OSes in PrOS becoming
homogeneous. We believe that this fact would be acceptable if once
TAs are developed based on the standard APIs, such as those of
GlobalPlatform, rather than using unique APIs supported only in a
specific secure OS.

With respect to the homogeneity of secure OS in PrOS, all
security OSes will share the same vulnerability, which can lead to
a security concern that an attacker might be able to compromise
all secure OS instances in the same way. It is laborious, however,
because with PrOS each TA runs on a separate secure OS so that
the attacker has to launch tailored privilege escalation attacks as
many as the number of TAs. Also, we will be able to improve the
zygote mechanism through diversification techniques [33], thereby
preventing secure OSes from having the same vulnerability.
Hardware-supported Virtualization on TrustZone. ARM re-
cently announced ARMv8.4-a architecture which includes Secure
EL2 for virtualization on TrustZone. Although the detailed spec-
ification about Secure EL2 is not yet available, it will contain
similar hardware supports for memory/IO virtualizations as the
existing EL2. Therefore, we predict that if a hypervisor based on
Secure EL2 is implemented, it will facilitate more efficient and
transparent implementation of TrustZone virtualization than PrOS.
However, we believe that PrOS and its software-based TrustZone
virtualization will be still worthy considering many existing devices
and budget devices that are implemented on the conventional ARM
architectures.
Communication between TAs. As mentioned in §3, we assume
that all TAs are not trusted each other because different developers
develop them. Thus, PrOS does not provide a mechanism for
direct communication between secure OSs for each TA in the
secure world. However, some TAs may need to communicate
with other TAs (for example, a TA of a device vendor providing
fingerprint services). At this point, TAs can communicate with
different TAs indirectly through the normal world, and supporting
direct communication between TAs will be our future work.

8 RELATED WORK

Isolated Execution Environment. Building isolated execution
environments to ensure secure execution of TAs has long been
a widely studied topic in security. TrustVisor [34], InkTag [35],
Overshadow [36], Sego [37], OSP [38], PrivateZone [39], and
Wimpy-Kernel [40] established isolated execution environments
based on hypervisors. TrustShadow [41], ObC [11], [13], and
TLR [42] achieved the same goal by using TrustZone. However,
the security guarantees provided by all the aforementioned systems
might be compromised by a malicious TA launching privilege
escalation attacks because they assume the execution model that all
TAs run on top of a single privileged software layer corresponding
to the secure OS in TrustZone. We believe that such security
concern these systems are facing can be mitigated by applying
PrOS and by allowing each TA to run separately without sharing
the same privileged software layer.

11

Formal Verification. If it were proved that a secure OS has
no security vulnerability by applying the formal verification
mechanism [31], a malicious TA running on the secure OS would
not be able to compromise other TAs across the isolation boundary
set by the OS. However, this mechanism requires certain constraints
on kernel implementation and design. For example, to eliminate
non-deterministic events, there are various restrictions such as
disabling most interrupts or limiting the use of function pointers.
As a result, these limitations make it difficult to apply the formally
proven security mechanisms to an existing secure OS.

TrustZone Virtualization in the Normal World. Terra [43]
provides strong protection to TAs by allowing each of them to
run on top of different OSes by leveraging hypervisors. We can
use this approach to achieve the goal of PrOS by (1) virtualizing
TrustZone in the normal world and (2) installing secure OSes in the
virtualized TrustZone environments. However, this approach causes
problems regarding security and performance. In this approach,
the hypervisor is the TCB of secure OSes, but historically the
hypervisor suffered from various security vulnerabilities [44], as its
implementation is complex by various functionality. This approach
also can impose a non-negligible performance burden. As the
hypervisor intervenes in all accesses to the underlying hardware
resources, this approach introduces unavoidable overheads. We
highlight that such overheads are impacting the entire software
components running in the normal world (including normal OS
and its running applications) because the hypervisor should always
be turned on even if TrustZone services are not actively used.

TrustZone Virtualization in the Normal World with Security
Module in the Secure World. TrustICE [1] has built isolated
execution environments for secure OSes in the normal world.
TrustICE dynamically sets TZASC not only to protect secure OSes
from an untrustworthy normal OS in the normal world but also to
isolate secure OSes from each other. One thing to note is that as
TZASC is located between CPU cores and DRAM, any protection
configuration of TZASC affects all CPU cores. It means that if
one core runs a secure OS in a multi-core environment, the other
cores with separate secure OSes or even the normal OS must be
suspended, severely limiting the scalability of TrustICE. However,
in PrOS, TZASC is used only to block access to secure OSes from
the normal world, and PVisor provides isolation between secure
OSes through TrustZone virtualization. Therefore, PrOS can avoid
such a scalability issue, unlike TrustICE. vTZ [2] proposed another
approach that can realize the goal of PrOS. In this approach, a
hypervisor is still employed to virtualize TrustZone in the normal
world, but the difference is that it is excluded from the TCB as
follows: (1) a security module is installed in the secure world
that is isolated by the real TrustZone from the hypervisor, (2)
the security module supervises and controls the behaviors of the
hypervisor (i.e., the execution flow and the resource management).
As a result, secure OSes in the virtualized TrustZone are still
secure even after the hypervisor is compromised because the TCB
belongs to the security module in the secure world. However, this
approach still causes the performance problem, especially in mobile
devices that have almost turned off the hypervisor, because all
software components in the normal world are subject to continuous
performance degradation. Even worse, this approach suffers from a
compatibility issue. As the hypervisor (in the normal world) must
be monitored by the security module (in the secure world), there
is no transparent way to enforce the non-bypassable supervision
of the security module against the hypervisor. Therefore, this

approach requires many modifications to the legacy hypervisor that
is continuously evolving due to the changes in hardware/software
requirements, arguably rendering it an impractical solution.

9 CONCLUSION

ARM TrustZone is a promising security technique providing
hardware-assisted privilege isolation for computing resources.
However, since all trusted applications are running on the same
secure OS, the secure OS becomes the single point of security
failure. This paper realized the light-weight secure OSes through
virtualization, each of which runs a trusted application. As such,
compromising one secure OS does not implicate that the entire
TrustZone is subverted, augmenting the security level of TrustZone.
According to the evaluation of the prototype of PrOS, PrOS is
not only performance effective but also demonstrated that it can
support various trusted applications, ranging from Bitcoin wallet to
DRM player, without imposing compatibility issues.

ACKNOWLEDGEMENT

This work was supported by Institute of Information Com-
munications Technology Planning Evaluation (IITP), a grant
funded by Korea government (Ministry of Science and ICT)
(no. 2016-0-00078, Cloud Based Security Intelligence Technology
Development for the Customized Security Service Provisioning).
This work also was supported by the National Research Foundation
of Korea(NRF) grant funded by the Korea government(MSIT)
(NRF-2017R1A2A1A17069478, NRF-2018R1C1B5086364, NRF-
2018R1D1A1B07049870).

REFERENCES

[1] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang, “Trustice: Hardware-
assisted isolated computing environments on mobile devices,” in De-
pendable Systems and Networks (DSN), 2015 45th Annual IEEE/IFIP
International Conference on. IEEE, 2015, pp. 367–378.

[2] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, “vtz: Virtualizing
arm trustzone,” in USENIX Security Symposium, 2017.

[3] D. Shen, “Attacking your trusted core: Exploiting trustzone on android,”
in Black Hat USA, 2015.

[4] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “Armaged-
don: Cache attacks on mobile devices.” in USENIX Security Symposium,
2016, pp. 549–564.

[5] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.
Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest we
remember: Cold boot attacks on encryption keys,” in Proceedings of the
17th Conference on Security Symposium, 2008.

[6] E. Solutions, “Analysis tools for ddr1, ddr2, ddr3, embedded ddr and fully
buffered dimm modules,” 2014, http://www.epnsolutions.net/ddr.html.

[7] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deterministic
rowhammer attacks on mobile platforms,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2016, pp. 1675–1689.

[8] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin, S. M.
Rumble, E. De Lara, M. Brudno, and M. Satyanarayanan, “Snowflock:
rapid virtual machine cloning for cloud computing,” in Proceedings of the
4th ACM European conference on Computer systems. ACM, 2009, pp.
1–12.

[9] S. H. Kim, D. Han, and D. H. Lee, “Predictability of android openssl’s
pseudo random number generator,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security. ACM,
2013, pp. 659–668.

[10] Linaro, “Op-tee: Open source trusted execution environment.” 2017,
https://www.op-tee.org/.

[11] K. Kostiainen, J.-E. Ekberg, N. Asokan, and A. Rantala, “On-board cre-
dentials with open provisioning,” in Proceedings of the 4th International
Symposium on Information, Computer, and Communications Security.
ACM, 2009, pp. 104–115.

[12] K. Adams and O. Agesen, “A comparison of software and hardware
techniques for x86 virtualization,” in Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, 2006.

12

http://www. epnsolutions.net/ddr.html
https://www.op-tee.org/

[13] J.-E. Ekberg, K. Kostiainen, and N. Asokan, “Trusted execution envi-
ronments on mobile devices,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. ACM, 2013, pp.
1497–1498.

[14] A. Fitzek, F. Achleitner, J. Winter, and D. Hein, “The andix research
osâĂŤarm trustzone meets industrial control systems security,” in Indus-
trial Informatics (INDIN), 2015 IEEE 13th International Conference on.
IEEE, 2015, pp. 88–93.

[15] “Xen,” https://www.xenproject.org/.
[16] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable

third generation architectures,” Communications of the ACM, pp. 412–421,
1974.

[17] C. A. Waldspurger, “Memory resource management in vmware esx server,”
in Proceedings of the 5th Symposium on Operating Systems Design and
implementationCopyright Restrictions Prevent ACM from Being Able to
Make the PDFs for This Conference Available for Downloading, ser. OSDI
’02. Berkeley, CA, USA: USENIX Association, 2002, pp. 181–194.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1060289.1060307

[18] Y. Dong, J. Dai, Z. Huang, H. Guan, K. Tian, and Y. Jiang, “Towards
high-quality i/o virtualization,” in Proceedings of SYSTOR 2009: The
Israeli Experimental Systems Conference. ACM, 2009, p. 12.

[19] ARM, “System memory management unit (smmu),” http://www.arm.com/
products/system-ip/controllers/system-mmu.php.

[20] A. Kadav, M. J. Renzelmann, and M. M. Swift, “Fine-grained fault
tolerance using device checkpoints,” in Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’13. ACM, 2013.

[21] “generic tee subsystem,” https://lwn.net/Articles/674280/.
[22] “Contiguous memory allocation,” https://lwn.net/Articles/396702/.
[23] ARM, “Versatile express juno r1 development platform,” in ARM 100122_-

0100_00_en, 2015.
[24] F. Zhang, J. Chen, H. Chen, and B. Zang, “Cloudvisor: retrofitting

protection of virtual machines in multi-tenant cloud with nested vir-
tualization,” in Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, 2011, pp. 203–216.

[25] U. Steinberg and B. Kauer, “Nova: a microhypervisor-based secure
virtualization architecture,” in Proceedings of the 5th European conference
on Computer systems. ACM, 2010, pp. 209–222.

[26] J. Yang, “Cold start times: An analysis of top apps,” http://blog.
nimbledroid.com/2016/02/17/cold-start-times-of-top-apps.html.

[27] GlobalPlatform, “Tee client api specification v1.0.”
[28] ——, “Tee internal core api specification v1.1.”
[29] “optee-test,” https://github.com/OP-TEE/optee_test.
[30] A. Machiry, E. Gustafson, C. Spensky, C. Salls, N. Stephens, R. Wang,

A. Bianchi, Y. R. Choe, C. Kruegel, and G. Vigna, “Boomerang: Exploiting
the semantic gap in trusted execution environments,” 2017.

[31] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish et al., “sel4: Formal
verification of an os kernel,” in Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles. ACM, 2009, pp. 207–220.

[32] K. Hazelwood and A. Klauser, “A dynamic binary instrumentation engine
for the arm architecture,” in Proceedings of the 2006 international
conference on Compilers, architecture and synthesis for embedded systems.
ACM, 2006, pp. 261–270.

[33] B. Lee, L. Lu, T. Wang, T. Kim, and W. Lee, “From zygote to morula:
Fortifying weakened aslr on android,” in Security and Privacy (SP), 2014
IEEE Symposium on. IEEE, 2014, pp. 424–439.

[34] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig,
“Trustvisor: Efficient tcb reduction and attestation,” in Security and Privacy
(SP), 2010 IEEE Symposium on. IEEE, 2010, pp. 143–158.

[35] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel, “Inktag:
Secure applications on an untrusted operating system,” in ACM SIGARCH
Computer Architecture News, vol. 41. ACM, 2013, pp. 265–278.

[36] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger,
D. Boneh, J. Dwoskin, and D. R. Ports, “Overshadow: a virtualization-
based approach to retrofitting protection in commodity operating systems,”
in ACM SIGARCH Computer Architecture News, vol. 36. ACM, 2008,
pp. 2–13.

[37] Y. Kwon, A. M. Dunn, M. Z. Lee, O. S. Hofmann, Y. Xu, and E. Witchel,
“Sego: Pervasive trusted metadata for efficiently verified untrusted system
services,” in Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating
Systems, vol. 51. ACM, 2016, pp. 277–290.

[38] Y. Cho, J.-B. Shin, D. Kwon, M. Ham, Y. Kim, and Y. Paek, “Hardware-
assisted on-demand hypervisor activation for efficient security critical code
execution on mobile devices.” in USENIX Annual Technical Conference,
2016, pp. 565–578.

[39] J. Jang, C. Choi, J. Lee, N. Kwak, S. Lee, Y. Choi, and B. Kang,
“Privatezone: Providing a private execution environment using arm
trustzone,” IEEE Transactions on Dependable and Secure Computing,
2016.

[40] Z. Zhou, M. Yu, and V. D. Gligor, “Dancing with giants: Wimpy kernels
for on-demand isolated i/o,” in Security and Privacy (SP), 2014 IEEE
Symposium on. IEEE, 2014, pp. 308–323.

[41] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger,
“Trustshadow: Secure execution of unmodified applications with arm
trustzone,” 2017.

[42] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using arm trustzone
to build a trusted language runtime for mobile applications,” in ACM
SIGARCH Computer Architecture News, vol. 42. ACM, 2014, pp. 67–80.

[43] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: A
virtual machine-based platform for trusted computing,” in ACM SIGOPS
Operating Systems Review, vol. 37. ACM, 2003, pp. 193–206.

[44] “Xen: Vulnerability statistics,” http://www.cvedetails.com/vendor/6276/
XEN.html.

Donghyun Kwon received the BS degree in
Electrical and Computer Engineering from the
Seoul National University, Korea, in 2012. He
is currently working toward the PhD degree in
Electrical and Computing Engineering from the
Seoul National University, Korea. His research
interests include system security against various
types of threats.

Jiwon Seo received the BS degree in Electri-
cal and Computer Engineering from the Seoul
Women’s University, Korea, in 2016. She is cur-
rently working toward the PhD degree in Electri-
cal and Computing Engineering from the Seoul
National University, Korea. Her research interests
include system security against various types of
threats.

Yeongpil Cho received the BS degree in Electri-
cal Engineering from the POSTECH, Korea, in
2010. He received the PhD degree in Electrical
and Computer Engineering from the Seoul Na-
tional University, Korea, in 2018. Currently, he is
a professor in the School of Software at Soongsil
University. His research interests include system
security against various types of threats.

Byoungyoung Lee received the BS and MS de-
grees in Computer Science and Engineering from
POSTECH, Korea in 2009 and 2011, respectively.
He received the PhD degree in computer science
from the Georgia Institute of Technology in 2016.
Currently, he is a professor at the Department
of Electrical and Computer Engineering, Seoul
National University, Korea. He is interested in all
computer security and privacy related problems
in general. In particular, his research focus is in
system security, e.g., designing and implement-

ing secure systems through eliminating vulnerabilities and mitigating
attacks.

Yunheung Paek received the BS and MS de-
grees in Computer Engineering from the Seoul
National University, Korea in 1988 and 1990,
respectively. He received the PhD degree in
computer science from the University of Illinois
at Urbana-Champaign in 1997. Currently, he is
a professor at the Department of Electrical and
Computer Engineering, Seoul National University,
Korea. His research interests include system
security with hardware, secure processor design
against various types of threats, and machine

learning based security solution. He is a member of the IEEE.

13

https://www.xenproject.org/
http://dl.acm.org/citation.cfm?id=1060289.1060307
http://www.arm.com/products/system-ip/controllers/system-mmu.php
http://www.arm.com/products/system-ip/controllers/system-mmu.php
https://lwn.net/Articles/674280/
https://lwn.net/Articles/396702/
http://blog.nimbledroid.com/2016/02/17/cold-start-times-of-top-apps.html
http://blog.nimbledroid.com/2016/02/17/cold-start-times-of-top-apps.html
https://github.com/OP-TEE/optee_test
http://www.cvedetails.com/vendor/6276/XEN.html
http://www.cvedetails.com/vendor/6276/XEN.html

	Introduction
	Background
	TrustZone
	Memory Management

	Threat Model
	Design
	Design Principles
	Overview
	Dynamic Management of Secure OS
	Memory Allocation for Secure OS
	Loading Secure OS
	Unloading Secure OS
	Provided Interfaces

	Secure OS-aware Virtualization
	CPU-State Virtualization
	Memory Virtualization
	Device Virtualization

	Implementation
	Case Study
	Evaluation
	Achieving the Design Goals
	Performance Evaluation
	Case Study Evaluation
	Security Evaluation
	Possible attacks against PrOS
	Comparison with the legacy TrustZone

	Limitations and Discussion

	Related work
	Conclusion
	References
	Biographies
	Donghyun Kwon
	Jiwon Seo
	Yeongpil Cho
	Byoungyoung Lee
	Yunheung Paek

