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Abstract—Cloud based Spark platform is a tempting approach
for sharing data, as it allows data users to easily analyze the data
while the owners to efficiently share the large volume of data.
However, the absence of a robust policy enforcement mechanism
on Spark hinders the data owners from sharing their data due
to the risk of private data breach. In this respect, we found that
malicious data users and cloud managers can easily leak the data
by constructing a policy violating physical plan, compromising
the Spark libraries, or even compromising the Spark cluster itself.
Nonetheless, current approaches fail to securely and generally
enforce the policies on Spark, as they do not check the policies
on physical plan level, and they do not protect the integrity of
data analysis pipeline.

This paper presents LAPUTA', a secure policy enforcement
framework on Spark. Specifically, LAPUTA designs a pattern
matching based policy checking on the physical plans, which is
generally applicable to Spark applications with more fine-grained
policies. Then, LAPUTA compartmentalizes Spark applications
based on confidential computing, by which the entire data analysis
pipeline is protected from the malicious data users and cloud
managers. Meanwhile, LAPUTA preserves the usability as the data
users can run their Spark applications on LAPUTA with minimal
modification. We implemented LAPUTA, and evaluated its security
and performance aspects on TPC-H, Big Data benchmarks, and
real world applications using ML models. The evaluation results
demonstrated that LAPUTA correctly blocks malicious Spark
applications while imposing moderate performance overheads.

I. INTRODUCTION

Cloud based big data analytics [62] is an emerging approach
to share large volume of data, as the data users can easily
analyze the data while the owners can efficiently share the
data on the cloud. In particular, Spark [65] is one of the most
popular big data analytics platform that is well suited for
these use cases. For example, several research agencies from
pharmaceutical companies utilize Spark to analyze medical
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datasets shared from hospitals [31]. As another example, it is a
common approach for the banks to federate their databases into
a shared Spark platform, efficiently analyzing large volume
of data [3]. There are already numerous cloud managers who
provide a full-featured Spark platform as a service [22], [39].

However, sharing the data without proper policy enforcement
may incur significant financial costs to the data owners as
malicious data users can breach the private (or proprietary)
information. These security issues are particularly important
considering the fact that datasets (e.g., medical data [21],
[31], and financial data [1]) often contain private information
regulated under GDPR [45], CCPA [25], and HIPAA [7]. If not
observed, the data owners can be faced with serious charges,
which has been showcased in the recent Cambridge Analytica
lawsuit of Meta, costing 725 million dollars for settlement [16].
Thus, the inability to enforce the policies is the major obstacle
for the data owners from sharing their data.

In this respect, we found that current architecture of
Spark [65] is not sufficient to enforce the policies on data.
Especially, the problem lies in the monolithic architecture of
Spark, which gives full control to the data users to manipulate
entire data analysis pipeline. Thus, the users can easily retrieve
a policy violating analysis result by 1) building a malicious
query plan in Spark applications (using Spark libraries [65],
[10] as usual), ii) directly compromising the Spark libraries
(e.g., Spark SQL [10], MLIib [38]), or even iii) manipulating
worker nodes that actually perform computations on the data.

To this end, we found that it is essential to protect the entire
data analysis pipeline, which should meet the following two
requirements: i) checking the query plans against the policies,
and ii) ensuring the validated plans are correctly executed
on the data. However, existing works to enforce the policies
in database (in general) have failed to fulfill these require-
ments [37], [52]. In particular, most of the works are limited to
enforce the policies only on SQL context [37], not on the query
plans generally constructed in Spark applications [65], [10].
Furthermore, they do not provide general policy definitions,
limiting their uses for specific cases [37], [52]. Worse yet,
none of the works have considered protecting the data analysis
pipeline from a malicious Spark application itself, as it was
commonly assumed benign [60], [61]. However, in our threat
model, it is not true as the malicious data user has full control



over the Spark applications as well as the worker nodes.

In this paper, we design LAPUTA, a secure policy enforce-
ment framework on Spark. LAPUTA can be characterized
by two correlated design decisions—i.e., integrating policy
enforcement logic and confidential computing based compart-
mentalization to meet the aforementioned requirements. First,
LAPUTA designs a new pattern matching [64] based approach
to define and enforce the policies on Spark physical plans.
Especially, LAPUTA employs regular expression in defining the
policies so that the data owners can express fine-grained policies
that work on general Spark applications. Second, LAPUTA
leverages compartmentalization with confidential computing [5],
[29], [35], [9] to protect the data analysis pipeline from
malicious data users. Specifically, we compartmentalize the
Spark applications into two address spaces such that the
untrusted user cannot compromise the core LAPUTA logic,
which includes policy checking and query execution. In
addition, the safe address space (running core LAPUTA logic)
is further protected by confidential computing (e.g., AMD SEV-
SNP [5], [4]), thereby ensuring its integrity from the attackers
controlling entire software stacks.

We implemented LAPUTA into two extensible modules
of Spark, where each is for the data user and the data
owner respectively. For the user’s side, LAPUTA preserves
the compatibility so that the users do not need to modify their
code (using Spark libraries [65], [10]), but only have to import
the corresponding LAPUTA module. On the other hand, for
the owner’s side, LAPUTA protects the entire data analysis
pipeline (including the data itself) with AMD SEV-SNP [4],
which includes query processing, policy checking, and data
processing in the distributed nodes.

In order to evaluate the practical impact of LAPUTA,
we performed security and performance evaluations on the
prototype implementation. As a security evaluation, we checked
whether LAPUTA correctly enforces 7 synthetic policies on
TPC-H benchmark [51], which consists of 8 tables and 22
complex queries. The security evaluation clearly demonstrated
that LAPUTA can block malicious data retrievals by blocking
9 queries from the benchmark. For the performance evaluation,
we measured the overheads of LAPUTA on i) TPC-H bench-
mark [51], ii) Big Data benchmark [6], and iii) real world
applications using recommendation [27], [34], and clustering
models [41]. The evaluation showed that LAPUTA imposes
35% of latency and 25% of throughput overhead on average,
demonstrating its strong feasibility.

II. BACKGROUND

In this section, we provide brief backgrounds on
Spark (§II-A), and confidential computing (§11-B).

A. Distributed Big Data Analysis with Spark

Apache Spark [65] is one of the most successful and efficient
distributed big data analytics platform. The platform provides
an abstracted programming model for the users so that they
can focus on analyzing the data while the Spark engine handles
the low level operations of managing distributed nodes. To
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Figure 1: Example of a Spark application and the constructed physical
plan.

be specific, Spark requires the users to construct a physical
plan, which is a directed acyclic graph (DAG) specifying how
the data should be computed to get the output. Then, Spark
automatically splits the physical plan into a number of small
tasks, and schedules them to be executed in the distributed
worker nodes.

An important design decision of Spark is that it provides
libraries [10], [38], [65] for the users to easily construct the
physical plans. Thus, the users develop their own Spark appli-
cations using the Spark libraries, and the libraries automatically
construct the physical plans and run the tasks on the nodes.
By providing Spark libraries, it offers high flexibility for the
users to employ arbitrary code and (other) libraries [10], [43],
[36] in building their Spark applications, which facilitates the
data analysis process. For example, it is a common pattern to
use PySpark [65], [10] with graphical libraries [8] to visualize
the analysis results. Furthermore, the extensions of the Spark
libraries (e.g., Spark SQL [10], and MLIib [38]) empower the
users to conduct more thorough data analysis by supporting
various interfaces.

While Spark applications can be developed using several
libraries [33], [46], [44], [32], all of them internally perform
aforementioned two operations: i) physical plan construction,
and ii) task generation and execution. As the first operation,
Spark application constructs a physical plan (i.e., DAG)
whose nodes denoting the computations to be perfomed on
the data and the edges denoting the data flow (as shown
in Figure 1-(b)). In particular, Spark libraries provide two
sorts of APIs: transform [65] and action [65]. The APIs
are freely invoked by the user as shown in Figure 1-(a).
Upon the invocations of transform APIs (e.g., filter in
line 1 of Figure 1-(a)), the libraries continuously construct
the physical plan by inserting a node into it (i.e., Filter node
inserted in Figure 1-(b)). Then, when an action API is invoked
(e.g., show in line 5 of Figure 1-(a)), the plan is optimized and
filled with the information for actual execution (i.e., complete
plan in Figure 1-(b)), and the Spark application proceeds to
the next operation.

In subsequent operation, Spark application splits the physical
plan into multiple tasks and executes them in the distributed
worker nodes. Especially, each task is a byte code [17],
[65], [10] which runs on an interpreter (e.g., Java Virtual
Machine [57]), containing the information about how the
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Figure 2: System model of LAPUTA.

data should be processed locally (e.g., the source dataset,
the operations, and the destination node that should receive
the output). Thus, the tasks are concurrently executed in the
distributed nodes, and the final result (i.e., final output of
the computations following the nodes in the physical plan) is
returned after all the tasks are completed.

B. Confidential Computing

Confidential computing is a technique to protect the data
in cloud using the security features provided by hardware
(e.g., Intel SGX [35], TDX [29], AMD SEV [5], and NVidia
H100 [42]). Especially, the confidential computing enabled
hardware constructs an isolated execution environment, called
enclave, which is protected against the privileged components
such as operating systems and hypervisors. Thus, it ensures the
confidentiality of enclave owner’s program and data even in a
compromised environment. Furthermore, the enclave provides
a remote attestation, by which its owner verifies the integrity
of the loaded program, and sends their secret data into it [35],
[51, [29]. Thanks to its strong security benefits, emerging
cloud applications are employing (or expected to employ)
confidential computing to protect the customer’s data (e.g.,
Apache Hadoop [48], Machine Learning [38], etc).

III. MOTIVATION

This paper focuses on the security problem of enforcing data
policies while using Spark for data analysis. In this section,
we provide the system model and problem setting of LAPUTA
(§II-A). Then, we discuss the possible attack vectors when
enforcing policies on Spark (§III-B), and briefly introduce our
approaches (§I11-C).

A. System Model

We consider the scenario of sharing a dataset on Spark [65],
[10], where the owner and the user of the data are different.
Especially, we consider three parties involved in this scenario
as shown in Figure 2: i) data owner, ii) data user, and iii) cloud
manager.

« Data Owners have a valuable dataset, which they want to
share for data analytics by third-party data users. Meanwhile,
they want specific policies are enforced on data retrieval,
as the dataset contains private and proprietary information.

This requirement may stem from internal considerations, as
well as from privacy laws such as GDPR [45], HIPAA [7],
and CCPA [25]. Common real world examples of such data
owners are hospitals [31] that want to share medical dataset
for research, but also want to protect the private information
of their patients.

« Data Users analyze the owner’s data using Spark. They
develop Spark applications using various Spark libraries
(e.g., Spark SQL [10], MLIib [38]), and the applications
may contain arbitrary code and libraries to facilitate the data
analysis (e.g., libraries for graphical interfaces [8]). Common
real world examples of data users are pharmaceutical research
agencies [31], [23] that often analyze the medical dataset
from the hospitals.

o Cloud Manager runs the Spark engine [65] on behalf of the
data owner. This is because the conventional data owners
(such as hospitals [40] and banks [50]) do not have sufficient
computing infrastructure. Thus, it is a common approach
to outsource the database [12], [30], and there are already
numerous cloud managers who provide data outsourcing
services based on Spark (e.g., Databricks [22], and Azure
Synapse [39]).

Problem Setting. In this system model, the data owners are

concerned that the data users and cloud managers might obtain

policy violating information from the data. Since the current

Spark platform lacks sufficient policy enforcement (except for

coarse-grained access controls on the data [60]), malicious

data users would easily obtain policy violating analysis results
from the data by implementing malicious Spark applications.

Furthermore, malicious cloud managers may also breach the

data as they control the entire software and hardware stacks.

B. Secure Policy Enforcement on Spark

To this end, we focus on designing a secure policy en-
forcement mechanism on Spark. Thus, we first discuss the
possible attack vectors raised by malicious data users and
cloud managers using an example scenario of sharing medical
dataset. Then, we discuss the limitations of previous works for
enforcing the policies on Spark.

Example Scenario of Sharing Medical Dataset. Suppose
a hospital owns a medical dataset, whose schema is shown
in Figure 3-(a), and they want to share the data with third-party
pharmaceutical research agency. Especially, the research agency
is finding suitable patients for their targeted clinical trials [31],
[21] as a drug works differently on each patient [40], [31],
[12]. Thus, the agency has to retrieve the name and address of
the patients, who are the most appropriate to the investigational
drug based on the medical information. However, the hospital
also wants to enforce the policies as shown in Figure 3-
(b) as the data contains private information of the patients.
Specifically, the policies prevent the research agency from
abusing (e.g., illegally using the data in machine learning) or
leaking the patient’s private data (e.g., exposing the disease
of the patients). Thus, they are hesitating to share the data as
it is not sufficient for current Spark platform to enforce the
policies.
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Possible Attacks to Break Policies on Spark. Without
a secure policy enforcement, a malicious research agency
(and cloud manager) would easily break the policies (and
leak the data) as shown in Figure 4. To be specific, they
would bring the analysis results not satisfying the policies
by i) building a malicious Spark application that constructs a
policy violating physical plan (i.e., D), or ii) generates policy
violating tasks (even from a benign physical plan, ), or even
iii) compromising the Spark cluster itself, manipulating the
executions in the worker nodes (i.e., 3).

Spark applications may construct a physical plan that
does not satisfy the policies (i.e., D in Figure 4-(a)). As a
straightforward example, as shown in the first attack of Figure 4-
(b), a malicious application would construct a physical plan
that does not check the consents from the patients before using
their records in machine learning (i.e., Kmeans), breaking the
policy P;—i.e., the patient table should have been filtered
on the consent field.

However, checking only the policy compliance of the
physical plan does not ensure the safety of the final results, as
a malicious Spark application can tamper with the actual tasks
(e.g., attack @ in Figure 4-(a)). For instance, Spark libraries
may be compromised to modify the tasks, as shown in the
second attack of Figure 4-(b), to use the patient’s social care

status in machine learning (i.e., Kmeans) even if the original
plan was not, breaking the policy P». Furthermore, even if
the tasks are benign, actual execution of the tasks in worker
nodes can be compromised (i.e., @) in Figure 4-(a)) since the
malicious cloud manager can deploy compromised images to
the worker nodes in Spark cluster.

Limitations of Previous Works. Thus, in order to enforce
the policies on Spark, LAPUTA must ensure the policies are
correctly obeyed throughout the entire data analysis pipeline.
For that, following two requirements must be guaranteed:
i) the physical plan constructed in the Spark application must
be checked against the policy compliance, and ii) the entire
procedure from the policy checking to the task generation and
execution must not be tampered with. Hence, LAPUTA can
ensure the policy compliant physical plan is correctly executed
on the data.

However, none of the previous works have designed a policy
enforcement mechanism considering these two requirements.
First of all, existing works on the policy enforcement mecha-
nism [52], [37], [60], [61] do not provide a method to define
the policies on physical plan. While most of them provide the
policy enforcement mechanism which works on SQL syntax
(e.g., SQL query rewriting [37]), they did not consider general
policy enforcement on the physical plans. Although LAPUTA
can employ these works by restricting the data users to use
only the SQL, it would severely harm the utility of the data
as the other Spark functionalities are widely used for data
analytics also—e.g., Spark SQL occupies only 18% of total
usage in Notebooks [18].

Furthermore, none of them have deliberated on how to
enforce the policies generally on the physical plans. For
example, the physical plan given in Figure 4-(b) was actually
breaking the policy P3, exposing the disease information of the
patients—i.e., the diag table is filtered on the disease before
being joined to the patient table, and the patient’s name is
projected, printing who has been diagnosed with cancer. In
order to prevent these cases, the policies should be expressible
enough to be matched over the entire physical plan, as there are
countless variants of the plans and data owner’s requirements.
However, the existing works have only provided fixed and
adhoc policies such as merely preventing specific tables from
being joined [37], [60], [61].

Second, none of the works have protected the data analysis
pipeline against the Spark users themselves, assuming the Spark



applications and worker nodes are trusted. While there were
several works that focused on SQL checking (assuming the
user is malicious), they assumed only the SQL query can be
malicious and the query processing is safely executed [60],
[52], [37], [61]. In contrary, we assume the entire procedure
of query processing can be tampered with as the adversaries
have full control over the entire Spark pipeline (from the Spark
applications to the worker nodes). While Opaque [66] proposed
to use confidential computing to protect the query processing
from malicious cloud managers, they did not care about the
integrity of task generation from the physical plan as they
assumed the Spark application is benign. Our threat model is
fundamentally different from Opaque in that we assume the
user, who develops the Spark applications themselves, can be
malicious.

C. LAPUTA’s Approaches

In order to achieve the requirements stated in §III-B, we
design following two approaches. First, LAPUTA leverages
a pattern matching-based policy checking on physical plans,
which employs regular expression [64] to define data usage poli-
cies. Specifically, LAPUTA checks the policies by examining
whether the nodes in the physical plan match the given pattern
of symbols, defined using regular expressions. The rationale
behind defining policies using regular expressions is to offer
better flexibility to data owners, allowing them to express
any policy expressible within regular languages. For example,
a pattern to match the plan in Figure 4-(b), which breaks
the policy P3, can be defined as *sgxsyx—it first identifies
the Filter (i.e., sg) and then the Join (i.e., s1). We explain
the details of regular expression based policy definition and
LAPUTA’s policy check logic in §IV-A.

Second, LAPUTA compartmentalizes the Spark applications
to protect the integrity of data analysis pipeline, which includes
the policy check logic, task generation, and executions in
worker nodes. In order to guarantee the integrity of data
analysis pipeline, it is essential to sandbox [28], [63] the Spark
application as it runs the (potentially malicious) data user’s
code and the Spark libraries in the same address space. In
other words, without sandboxing, a malicious code would
easily tamper with the Spark libraries to bypass the security
critical logics (e.g., policy checking) and directly control the
worker nodes to run policy violating tasks. Thus, LAPUTA
sandboxes the user’s code by compartmentalizing the Spark
application into two different address spaces (e.g., different
processes running in different VMs), preventing the code from
directly accessing security critical logics. In addition, LAPUTA
further protects the security critical logics using confidential
computing to prevent cloud managers from illegally affecting
the LAPUTA’s logic and worker nodes.

LAPUTA’s compartmentalization based sandbox provides
high flexibility for the data users as they can run their original
Spark applications with minimal modification. To be specific,
LAPUTA modifies the Spark libraries so that the security critical
logics (e.g., policy checking) can be seamlessly executed
in the different address space, protected by the confidential

computing. Our evaluation demonstrates that the data users
can implement the Spark applications on LAPUTA without
intrusively modifying their code. We explain the design details
of compartmentalization based sandbox in §IV-B.

IV. DESIGN OF LAPUTA

LAPUTA designs a new Spark framework, which securely
enforces the data owner’s policies while the users analyze
the data. To be specific, LAPUTA works as the conventional
Spark platform on cloud, where the data owner pre-uploads
the data and the users analyze it by running their own Spark
applications implemented using either Scala [43], Python [55]
or Spark-SQL APIs [10]. However, the end-to-end flow of the
data is protected using LAPUTA (and confidential computing)
such that the data users (and cloud managers) can obtain only
the analysis results satisfying owner defined policies.

LAPUTA’s design can be characterized by the following

two aspects: i) physical plan checking with LAPUTACHECKER
(§IV-A), and ii) confidential computing based compartmental-
ization with LAPUTAEXECUTOR (§IV-B). In the following,
we briefly discuss the threat model, and explain these two
components.
Threat Model. LAPUTA employs enclaves [35], [29], [5] in
the untrusted cloud environment to ensure its confidentiality
and integrity to the data owners. Thus, it does not trust any
other entities outside the enclave, which includes OSes and
hypervisors of the cloud managers, and the Spark applications
implemented by the data users. On the other hand, general
security limitations of confidential computing, such as micro-
architectural side channels [59], [56], [54], and Iago attacks [15]
are out-of-scope. Denial-of-Service attacks [47] are also out-
of-scope.

We assume the implementation of LAPUTA’s logic is bug-
free such that the data users cannot compromise its internal
operations using vulnerabilities. While LAPUTA enables enforc-
ing the policies on Spark, data owners are in charge of defining
the policies to correctly reflect their requirements. LAPUTA
does not ensure security against improper policy definition.
On the other hand, adversaries may construct a covert channel
to leak side information of the data (e.g., size of the table).
LAPUTA currently does not protect against such covert channels
and we discuss the potential mitigations in §VIII.

A. Physical Plan Checking with LAPUTACHECKER

LAPUTACHECKER checks all physical plans constructed
in the Spark applications against the owner defined policies.
In particular, data owners provide the allowed (or disallowd)
patterns of the nodes in the physical plans, using regular
expression, and LAPUTACHECKER checks whether the nodes
in the constructed physical plans match those patterns. To this
end, we elaborate how the data owners define the policies for
LAPUTACHECKER, and how the physical plans are checked
against the policies.

Policy Definition for LAPUTACHECKER. In order to express
various policies needed by the data owners, LAPUTACHECKER
uses the pattern of the nodes as the policy, which is based
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Figure 5: The procedure of defining policies.

on the regular expression [64]. Suppose Pg in Figure 5 (i.e.,
explained in §I1I-B), which mandates the patient’s disease must
not be revealed when the two tables (i.e., patient and diag
tables) are joined. For this policy, the owner has to enforce
that, if the tables are joined, i) the disease field must not be
retrieved as output (as it can be linked to the private information
of the patients), and ii) the disease field must not be used for
filtering (as it can reveal the patients who have the specific
disease).

To this end, the owner has to express the requirements into
the patterns that can match on the physical plan. Especially,
the pattern for the first requirement would denote that the final
node (i.e., root node, which is processed the last) in the plan
must not Project the disease field, if the tables are joined
(i.e., @ in Figure 5). The pattern for the second requirement
would denote that all the nodes in the plan must not Filter
on the disease field, if the tables are joined (i.e., D). As
such, in order to express the requirements into the patterns,
LAPUTACHECKER defines the policy as follows:

o Policy P = (t,r) is a tuple, where ¢ denotes a table (i.e.,
leaf node in the plan) whose following nodes are matched
against the pattern, and r denotes a pattern expressed in
regular expressions.

Given the policy (t,r), LAPUTACHECKER checks whether all
the nodes that process the table t (i.e., sequence of the nodes
from t to the root node) match the pattern r (i.e., regular
expression of symbols). In this respect, the first policy would
be (diag, *sy*sa), where the symbol s; represents the Join
of two tables, and sg represents the Project of disease field—
i.e., join the tables, and then project disease the last. The
second policy would be (diag, #s1*sg* | xsg*syk), where sq
represents the Join as before, and sg represents the Filter on
disease field—i.e., filtering on disease before or after joining
the tables. Thus, LAPUTA can forbid processing the physical
plans matching these patterns.

Pattern Definition for LAPUTACHECKER. Based on the
policies provided, LAPUTACHECKER performs pattern match-
ing on the physical plan as shown in Figure 6. Especially,
LAPUTACHECKER splits the plan into the node sequences
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Figure 6: Design of LAPUTACHECKER.

depending on the leaf tables (i.e., @D in Figure 6), and matches
the sequences against the patterns of the policies which have
the same table (i.e., @). Taking the aforementioned physical
plan in Figure 4 as an example, the node sequence of diag table
would be the right one in Sequence Extraction of Figure 6.
Then, LAPUTACHECKER would match the sequence against
the patterns (e.g., *sgksy* | *syxsgk) as explained earlier.
In particular, LAPUTACHECKER matches each node in the
sequence (e.g., Filter(disease=cancer) node, Join(ID) node,
and others) against each symbol in the pattern (e.g., s3, s1,
and *).

For that, LAPUTA formally defines the symbol, and the
matching condition between the symbol (in the pattern) and
the node (in the sequence). LAPUTA defines the symbol using
an operator, available fields, and optional expression as follows:

o Symbol s = (o, [{f}]) : (¢), where o denotes the operator,

[{f}] denotes the available fields, and the optional argu-

ment e denotes the expression that should be applied on

the fields. If e is not provided, any expression is allowed.
Given this, the matching condition of the symbol and the node
is as follows:

« A node n matches a symbol s, if

i. the operator of n is the same as the operator of s.

ii. the fields used in n belong to the available fields of s.

iii. if s has an optional expression, the expression applied
to the fields in n is the same as the optional expression
of s.

Thus, a single symbol can be matched to multiple nodes
that satisfy the matching conditions. Taking the policies
in Figure 5 as example, the symbol s; can be defined as s;
= (Join, [{ID}]) that matches all nodes which join the tables
using ID field as a key. The symbol sg would be defined as s3 =
(Filter, [{disease},ALL¢]) that matches all nodes which use
disease field in filtering—i.e., we use ALL¢ as a wildcard field
which can be any multiple fields except the already used one.
Thus, the pattern xsgks;+ would match any sequences of nodes
that contain the node, which Filter on disease, followed by
the node, which Join on ID, as shown in Pattern Matching
of Figure 6.

In addition, LAPUTA provides the optional expression (i.e.,
e from the definition of symbol), and wildcards (i.e., ALLop



Table I: A usage of optional expressions. The list of entire operators
is shown in Table IX.

Operator | Example

(Filter, [{age}])
<Filter«, [{age}]) : (age>:2®)

| Description

Filter using age with any filter condition.

Filt . -
Lier Filter only with filter condition age>=20.

Join must only use identity expression.
Optional expression is not allowed on Join.

Join ‘ (Join, [{1ID}])
Others ‘ (

Project, [{age}]) : mask(age) ‘ Project using age with mask function.

Table II: A usage of ALL¢. Details of available fields and ALL¢
are explained in §A.

Available fields of symbol ‘ Set of fields used in nodes that match

Any set of fields
{name}, {age}, {name, age}
Any set of fields that contains either name or age

ALLg
[{name, age}]
[{name, age}, ALL¢]

denoting any operator, and ALL¢ denoting any fields) in defining
the symbols, which facilitates making the patterns. The optional
expression can be used to specify a node that uses only a given
expression as shown in Table I. For instance, if the data owners
want to enforce the users to filter out teenage patients’ records,
they can use a symbol (Filter,{age}) : (age>=20) in their
patterns, and only the physical plans that contain a node filtering
on age>=20 will be matched.

The wildcards are used to match any nodes that use a
given field (e.g., (ALLop, disease) denoting any nodes using
disease field), or any nodes that use a given operator (e.g.,
(Filter,ALL¢) denoting any Filter nodes). Especially, when
ALL¢ is used in conjunction with other fields, any subset that
contains any one of the used field matches (i.e., illustrated
in Table II). Thus, data owners can define various policies
using these features, which is evaluated in §VI-C. We refer
to §A for the formal description of LAPUTA’s policy language.
Checking Physical Plans. Based on the results of pattern
matchings, LAPUTACHECKER determines whether a given
physical plan satisfies all the policies or not. In particular,
data owners provide whether a policy i) allows only the
plans matching the given pattern, or ii) disllows the plans
matching the given pattern. Thus, LAPUTACHECKER validates
a phyiscal plan only when it satisfies all the policies with its
side accordingly (i.e., allow or disallow). Taking the policy
example of Figure 5, both policies disallow the plans matching
the patterns, and a plan which matches any of the pattern would
be rejected.

B. Compartmentalization with LAPUTAEXECUTOR

In order to enforce the data policies throughout entire data
analysis pipeline, LAPUTA should ensure the physical plans are
checked (by LAPUTACHECKER as explained in §IV-A), and the
tasks are correctly generated and executed from the validated
plans. To this end, we compartmentalize the Spark applications,
because in current Spark architecture, a malicious code can
easily tamper with the security critical logics (e.g., Spark
libraries) running in the same address space. More specifically,
our compartmentalization splits the Spark application into two
components (as shown in Figure 7), running in different address
spaces: i) LAPUTAPROCESSOR, which runs the potentially

q\LaputaProcessor
1 d1 = diagfilter(cancer) |
» p1 = patientjoin(diagid) | E»‘%
3 p2 = kmeans(p1[heart rate])i «
+ p3 = p2(name,prediction) | @ %
Cannot 5 p3.show() :

access g

LaputaExecutor 2 v
3 LaputaChecker |4
0111 .

1101

Validated Plan 2

()~

Figure 7: Compartmentalization design of LAPUTA.
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malicious user provided code, and ii) LAPUTAEXECUTOR and
worker nodes, which safely perform policy checking on the
physical plans, and tasks generation and execution (through
distributed nodes). In addition, LAPUTAEXECUTOR and worker
nodes run in the enclaves to protect its integrity against the
attackers controlling entire software stacks.

LAPUTAPROCESSOR: Running Untrusted User’s Code.
Untrusted user’s code always runs in LAPUTAPROCESSOR
(i.e., @ in Figure 7), which is separated from the data as well
as the data analysis pipeline of the physcal plans. Thus, the
user’s code are strictly forbidden from retrieving arbitrary data
or tampering with the data analysis pipeline. On the other hand,
the users can implement arbitrary data analysis code as well as
other functionalities (e.g., visualizing analysis results [8]), since
LAPUTAPROCESSOR does not restrict how the application is
implemented. At the user’s point of view, LAPUTA’s libraries in
LAPUTAPROCESSOR provide the same programming interfaces
as Spark libraries [10], [38], with which the users can analyze
the data as usual.

The only difference is that the LAPUTA’s libraries internally
relays the constructed physical plan to the LAPUTAEXECUTOR
upon the request to execute the plan (i.e., invocation of action
APIs [65]). To be specific, while the code is executed as
shown in (D of Figure 7, the physical plan is constructed
as usual by inserting the nodes into it. Then, upon the
invocation of an action API (i.e., show function in line 5),
the physical plan is optimized, and the final plan is relayed
to the LAPUTAEXECUTOR to be processed further. We want
to note that LAPUTA’s libraries do not need to be protected
as all the security critical operations are performed in the
LAPUTAEXECUTOR.

LAPUTAEXECUTOR: Checking Plan and Executing Tasks.
Upon receiving the final physical plan from LAPUTAPRO-
CESSOR, LAPUTAEXECUTOR checks the owner provided
policies against it (i.e., @ in Figure 7), and performs the
task generation followed by task executions (i.e., B and @).
Meanwhile, LAPUTAEXECUTOR and the worker nodes run in
the enclave (e.g., confidential VM of AMD SEV-SNP [5]) with
encrypted channels so that the entire data analysis pipeline



is protected. In addition, the data owners can attest that the
correct LAPUTACHECKER and Spark engine are loaded into
LAPUTAEXECUTOR, and then, they can securely send the data
with the policies [5].

Firstly, LAPUTAEXECUTOR filters out the plans that do not
satisfy the policies using LAPUTACHECKER (i.e., explained
in §IV-A). Then, it generates the tasks from the validated
plans using the Spark engine as usual. In this step, we
can guarantee that the tasks are correctly generated as the
execution is protected by confidential computing. Finally,
LAPUTAEXECUTOR distributes the tasks to the nodes after
attesting them, and the actual data processing operations are
performed, which are also safely protected in the enclaves. Thus,
only the final results, which satisfy the policies as enforced by
LAPUTA, are returned to the data users.

V. IMPLEMENTATION

We implemented LAPUTA on Spark [65] (v3.3) using Scala
programming language (v2.12). We packaged LAPUTA’s com-
ponents (i.e., LAPUTAPROCESSOR and LAPUTAEXECUTOR)
as extensible modules of Spark, and thus we did not intru-
sively modify the internal infrastructure of Spark. The entire
implementation consists of ~2600 lines of Scala code, and we
explain the implementation details in following paragraphs.

We implemented LAPUTA’s compartmentalized architecture
using the (confidential) virtual machines on AMD SEV-ES
enabled CPUs [5]. In particular, each VM installs the Spark
engine, and one loads the LAPUTAPROCESSOR module, and the
other confidential one loads the LAPUTAEXECUTOR module.
As mentioned in §IV-B, the VM of LAPUTAPROCESSOR
runs the user applications and generates the physical plans
at every invocation of action APIs. The confidential VM
of LAPUTAEXECUTOR is verified by the data owner and
provisioned with sensitive data and the policies. On receiving
physical plans, it executes them after checking if each plan
adheres to owner policies, and sends back the results to the
user application.

Our implemented modules contain the code to commu-
nicate between each one in each VM. For that, we used
gRPC [26], where LAPUTAPROCESSOR VM is the client
and LAPUTAEXECUTOR VM is the server. More specifically,
communication is achieved as follows. First, the physical
plans in the LAPUTAPROCESSOR VM are intercepted by
wrapping the Spark action API. Second, LAPUTAPROCESSOR
converts the action API into an RPC that terminates in
the LAPUTAEXECUTOR VM. To transmit the physical plan
through RPC, we serialize its structure into a JSON for-
mat which includes all the information of the plan (e.g.,
operator class, expression class, tree hierarchy). Third, in
the LAPUTAEXECUTOR VM, the request is deserialized into
a Spark physical plan and verified using the checker (i.e.,
LAPUTACHECKER), which is implemented in-house using
Scala. Finally, the validated physical plans are safely executed
on the data and the analysis results are returned.

Our implementation has two limitations, none of which
significantly impact our performance results. First, we do not

currently implement remote attestation for the owner to attest
the correctness of LAPUTAEXECUTOR before sending data,
but realizing the protocol is a matter of engineering. Second,
a data owner’s policy is pre-defined in a text file, which is
loaded when the LAPUTAEXECUTOR enclave is initialized. In
the future, these policies can be dynamically loaded through
network connections.

VI. SECURITY CLAIMS AND EVALUATION

In this section, we elaborate how LAPUTA guarantees that the
policies are correctly enforced when retrieving the results from
the owner’s data (§VI-A). Then, we evaluate the correctness
of LAPUTACHECKER’s implementation by enforcing synthetic
policies (§VI-B) on TPC-H benchmark [51] with case studies
(§VI-O).

A. Claims on Security Guarantees of LAPUTA

LAPUTA guarantees the owner provided policies are always
enforced on data retrievals based on following two claims.
Especially, the claims ensure that the data (and its descendent
data flows) is always protected, and the malicious users (and
cloud managers) cannot disclose the owner’s data beyond what
is defined in the owner’s policy.

Claim 1. Data users and cloud managers cannot directly
access the owner’s data.

Owner’s data is always encrypted at rest, in transit, and even
in use as it can only be accessed through an enclave protected by
confidential computing. In order to guarantee the data flows (not
satisfying the policies) do not leave the protection domain, the
owner initially attests the enclave loading LAPUTAEXECUTOR
before sending their data, and provides the encrypted data with
encryption key only after the attestation succeeds. During the
data analysis, all the distributed nodes run in the enclaves, and
they perform mutual attestation against LAPUTAEXECUTOR to
get the encryption key for the owner’s data [5], [35], which
ensures the data is always encrypted throughout the data
analysis procedure. After the execution, the distributed nodes
terminate after safely erasing the encryption key.

Claim 2. A malicious user cannot disclose the owner’s data
beyond what is defined in the owner’s policy.

After attesting the LAPUTAEXECUTOR, the data owner
registers the policies through an encrypted channel. Thus,
it is impossible for the adversaries to tamper with the poli-
cies in transit. During the data analysis, LAPUTA mandates
that only the authenticated driver node (i.e., node running
LAPUTAEXECUTOR) can schedule the tasks to be executed
in the worker nodes—i.e., the authentication is performed
through the attestation between the nodes. Thus, the physical
plan constructed in untrusted Spark applications must always
be relayed to the LAPUTAEXECUTOR to be executed in the
worker nodes. In the LAPUTAEXECUTOR, security features
of enclave guarantee that the plans are correctly checked by
LAPUTACHECKER and the tasks are correctly generated.



Table III: Description of the policies.

Table ‘ Policy Description

P1 | all tables
P2 | customer
P3 | customer
P4 | customer | customer table must not be used in analytics alone.
P5 | customer

P6 | customer

Sensitive identifiers (i.e., primary keys and foreign keys) can only be used for joining tables.
Personally identifiable information (i.e., c_name, and c_acctval) must not be revealed.
Private information (i.e., c_mktsegment, c_comment, and c_phone) must not be obtained after filtering on PII (i.e., c_name, and c_acctval).

Account balance (i.e., c_acctbal) should not be revealed directly or indirectly.
Phone number (i.e., c_phone) must always be used in conjunction with tail function.

Filter, [{o_orderdate},ALL¢])

Filter on order date with any filter condition

P7 | orders If customer and orders tables are joined, address (i.e., c_address) must not be revealed with specific time (i.e., o_orderdate).
Table IV: Definition of the policies.
‘ Expression ‘ Description

S1 (Join, [keyList]) Join using any of the sensitive identifiers fields (i.e., keyList)
S92 (ALLop, [keyList,ALL¢]) Any with the sensitive identifiers
S3 (Project, [{c_name,c_acctbal},ALL¢]) Project on personally identifiable information
S4 | (Project, [{c_mktsegment,c_comment,c_phone},ALLf]) | Project on private information
S5 | (Filter,[{c_name,c_acctbal},ALLf]) Filter on personally identifiable information
586 | (Join, [{c_custkey,c_nationkey},ALL¢]) Join on the keys of customer table
S7 (Filter, [{c_acctbal},ALLf]) Filter on the account balance with any filter condition.
S8 | (ALLgp, [{c_phone},ALL¢]) All operators using phone number
S9 (ALLop, [{c_phone},ALLf]): (tail) Any operators using phone number with tail function
510 | (Join, [{o_custkey,c_custkey}]) Join using the keys of orders and customer tables

(

(

Project, [{c_address},ALL¢])

Project on the customer’s address

P1 | Allow (AllTables, (s1]"s2)*)
P2 | Disallow (customer, .*s3)

Sensitive fields in keyList can only be used for join.
Personally identifiable information should not be directly projected at the final result.

P3 | Disallow (customer, .*s5.%sy) When filtered on PII, private information must not be projected.
P4 | Disallow (customer, ("sg)*) customer table must not be used without join with other table.
P5 | Disallow (customer, .*s7.*) Filtering on account balance is always prohibited.

P6 | Allow (customer, ("sg|sg)*)
P7 | Disallow (orders, .*s10.%*S11.%S12|. %511 %

510+ *512)

Using phone number is allowed only when it is used with tail function.
If customer and orders tables are joined, address is projected, filtering on the order date is prohibited.

Table V: List of filtered TPC-H queries by LAPUTACHECKER.

Query | Q2| Q3 |Q5|Qs8| Q10 [Qi1| Q15| QI8 |Q22
Violated | P1 | P1,P7 | P7 | P7 | P1,P2,P6,P10 | Pl | Pl |PI,P2,PIO| PS5

B. Security Evaluation of LAPUTACHECKER

We evaluate the correctness of LAPUTACHECKER’s imple-
mentation by enforcing synthetic policies on TPC-H bench-
mark [51].

Benchmark and Policies. We leveraged TPC-H bench-
mark [51] as it is a well-known database benchmark with
real world schema and complex queries. TPC-H benchmark
consists of 8 tables and 22 SQL queries. Based on it, we came
up with 7 synthetic policies (i.e., policy descriptions P1 — P7
as shown in Table III) with the goal of preventing the leakage of
private customer information. In particular, amongst the 8 tables,
customer table contains personal information of the customers
(e.g., name, phone number, and account balance) and orders
table contains the information of the orders submitted by the
customers. Hence, we focused on preventing the extraction
of private customer information from either of these tables.
However, we want to note that defining the correct policies is
beyond the scope of LAPUTA, and it is the responsibility of
data owners.

Based on the policy descriptions, we defined the policies
for LAPUTACHECKER as shown in P1 — P7 of Table IV. In
order to define the policies, the owners first need to define
the symbols as shown in the upper part of Table IV. Then,

they can define the policies by combining the symbols like
regular expression as shown in the lower part. Taking the
policy P6 as an example, the owners first need to define a
symbol for checking whether the phone number (i.e., c_phone)
is used, and if used, it is used with substring function. For
that, we define the symbols ("sg|sg), which denotes the phone
number is never used (i.e., \sg), or it is used with substring
function (i.e., Sg). Thus, combining this symbol into the pattern
("sg|sg)* indicates that the phone number is never used in
the plan or it is used with substring function, satisfying the
policy P6.

Results. Then, we ran the 22 queries in TPC-H benchmark
on LAPUTA while enforcing the aforementioned policies.
Amongst the 22 queries, we found that 9 queries violate one
or more of our policies and are rejected by LAPUTACHECKER
(i.e., Table V). We manually inspected the queries to confirm
the correctness of this result, and no false-negatives were
found—i.e., every query violating the policies were caught
by LAPUTA. Please refer to §VIII for a full discussion on the
soundness and completeness of LAPUTA’s policy checking.

We briefly explain the violating queries below.

e Q2, Q11, and Q15 output the sensitive identifiers of the
tables directly, violating P1.

o Q3 referenced sensitive identifiers and also used the filter
operation with columns of customer table and orders table.
Hence, it violate P1, and P7.

e Q5 and Q8 violate P7 by filtering on o_orderdate and
projecting c_address, when the customer and orders tables



// Step 1. Defining Symbols

val sl Symbol(Join, List("o custkey", "c custkey"))
val s2 Symbol(Filter, List("o orderdate", "ALLf"))
val s3 Symbol(Project, List("c address", "ALLf"))

// Step 2. Defining Policy
val P7 = DisallowPolicy(
orders,
Set(
List((_,
List((_,
)
)

VIR G, (L, SO
"y, 52, (C, ")

Figure 8: Scala code snippet for defining policy P7

are joined.

Q10 and Q18 violate P1, P2 and P7. It directly outputs the
sensitive identifiers. Also, it outputs the columns of customer
table which includes the name, address, and phone number
of customer.

Q10 violates P6 as it uses phone number without substring
function.

Q22 was rejected due to filtering on personally identifiable

information and projecting private information, violating P5.

This query uses the substring function for c_phone but
filters on c_acctbal field before projecting it.

C. Case study

In this section, we provide a real world example of defining a

policy on LAPUTA, and how it is applied to the actual queries.

Defining Policy. We take the policy P7 as an example. Policy
P7 prevents the users from leaking the customer’s address
histories while allowing them to analyze the customer and order
information together. To this end, the owners can define the
policy as shown in Figure 8. In particular, they should declare
the symbols first using Symbol class that LAPUTA provides,
and declare the policy (i.e., AllowPolicy or DisallowPolicy
class) which takes the target table and the patterns.

Then, LAPUTACHECKER will inspect whether a physical
plan constructed from the application matches one of the
defined patterns (xsq* sg * sg) or (xsg* sy * sg). If the plan
matches any of these patterns, it will abort the analysis, and
inform that the plan violates the policy.

Query example. Once the owner completed defining the
policies, the users will freely analyze the data as long as
they satisfy the policies. We take the 10th query in TPC-H
benchmark as an example:

Q10.
select
c_custkey, c_name,
sum(l_extendedprice*(1-1_discount)) as revenue,
c_acctbal ,n_name,c_address,c_phone,c_comment
from

customer, orders, lineitem, nation
where
c_custkey = o_custkey
and l_orderkey = o_orderkey
and o_orderdate >= date ’1993-10-01’
and o_orderdate < date ’1993-10-01" + interval ’

3’ month
and l_returnflag =
and c_nationkey

'R’
n_nationkey

10

group by

c_custkey, c_name, c_acctbal, c_phone, n_name,

c_address, c_comment
order by

revenue desc
limit 20

This query violates P1, P2, P6, and P7. Taking the policy
P7 as an example, it first joins the customer and orders
tables on the fields c_custkey and o_custkey (i.e., matching
sl in previous code). Then, it filters the rows on o_orderdate
(i.e., matching s2). Finally, it projects c_address as one of
the output fields (i.e., matching s3), completing the pattern
matching against P7 in LAPUTACHECKER. Thus, the query
is rejected.

VII. PERFORMANCE EVALUATION

This section evaluates the performance overhead of LAPUTA
on database benchmarks and machine learning applications.

A. Evaluation Settings

Experimental Setup. We ran all the experiments on a cluster
of three AMD machines, which have EPYC 7313 32 cores
CPUs with 128 GiB RAM. All the machines run Ubuntu 22.04
image with Linux kernel v5.15.0. On top of that, we ran one
virtual machine for each with 6 vCPUs and 16 GiB virtual
memory to provide an equivalent environment for both the
scenarios without and with confidential computing (i.e., AMD
SEV-SNP [4]). In each VM, we ran LAPUTA which extends
Spark v3.3.0.

Terminology. In order to clearly demonstrate the practical
impact of LAPUTA, we evaluated the performance with three
different settings Spark, Laputa-Insecure, and Laputa.

o Spark runs the native Spark [65] on a normal VM, not
protected by AMD SEV-SNP. We use this setting as a
baseline which shows the original performance without
any policy enforcement and confidential computing.
Laputa-Insecure enforces the policies as explained
in §IV, but it does not use confidential computing. We
use this setting to measure the overheads of LAPUTA’s
compartmentalization and policy check mechanism.
Laputa is the same as Laputa-Insecure except it uses
confidential computing (i.e., AMD SEV-SNP VMs). It
is our proposed design that guarantees all the security
properties.

Evaluation Targets. We evaluated each setting with following
Spark applications (i.e., running SQL queries or machine
learning models) with each database benchmark.

e 22 SQL queries on TPC-H benchmark [51] are used
to exhaustively measure the performance overhead of
LAPUTA on various SQL queries. This benchmark is
well known for evaluating the performance of database
management systems [65], [22], [S1].

3 SQL queries on BDB benchmark [6] are used to
measure the performance of LAPUTA on large-scale data
processing and analytics. Each query is for measuring the
time for filtering, aggregating, and joining large volume
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of data. We excluded fourth query in BDB benchmark as
it uses external python scripts in query execution, which
is currently not supported by LAPUTA.

« Recommendataion system on Amazon product
reviews [27], [34] is included to measure the overhead
of LAPUTA on a real-world Spark application. The
recommendation system is used to suggest a potentially
purchasable products from the log of products that
customers have reviewed. It uses recommendation model
to analyze the reviews of the customers.

o Clustering model on Synthea health records [58] is
also a real-world Spark application that applies K-means
clustering on the dataset of patients’ health records. It clas-
sifies the patients into various groups depending on their
health records, which can be utilized by pharmaceutical
companies and disease research groups [31].

B. Latency Overhead of LAPUTA

We measured the latency for handling each query and
application in the benchmarks with three different settings—
i.e., Spark, Laputa-Insecure, and Laputa.

22 SQL queries on TPC-H benchmark. As shown in Figure 9,
Laputa has increased the latency about 35% for handling the
queries in TPC-H benchmark. In particular, the latency increase-
ment was mostly due to the LAPUTA’s compartmentalization
and policy check mechanism (i.e., increasing about 2500ms
by Laputa-Insecure), and employing confidential computing
has only increased 200 ms of latency on average (i.e., Laputa
versus Laputa-Insecure).

We provide the breakdown of the latency increased by
LAPUTA as shown in Figure 10. LAPUTA has shown fairly
constant latency increasement across the queries, ranging
from 1792 ms to 2460 ms. To be specific, the increased latency
can be broken down into the time for serialization (to send the
Spark physical plan over RPC), RPC transfer, deserialization,
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Figure 12: Latency evaluation on BDB benchmark.

and policy checking. Especially, the deserialization takes much
longer time than the serialization as LAPUTAEXECUTOR, which
receives serialized physical plans, needs to load the module for
deserializing the plan. Among them, the time for RPC transfer
and deserialization were the dominant factors, which take
about 81% of the increased latency. Since the deserialization
takes more than 50% of the increased latency, we assume that
optimizing this procedure would largely decrease the latency
overhead of LAPUTA.

While the policy checking time takes only small portion,
we show the time for clear demonstration (i.e., Figure 11).
LAPUTA consumes longer time to check the policies as more
complex queries are handled—i.e., queries Q8 and Q22 are the
most complex queries in TPC-H benchmark, which joins 8 tables
and contains multiple subqueries. However, we want to note
that the policy checking does not largely affect the latency, as
it occupies only 0.68% of the increased latency. While, it is
possible for the policy checking to take much longer time due
to a catastrophic backtracking [13], there is a little chance for
a Spark physical plan to have such complex pattern.

3 SQL queries on BDB benchmark. LAPUTA shows a similar
tendency on BDB benchmark as it does on the TPC-H benchmark,
as illustrated in Figure 12-(a). As expected, Figure 12-(b)
demonstrates that the time for serialization, RPC transfer, and
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Figure 13: Latency evaluation on ML models.

deserialization increases as the query becomes larger—i.e.,
from the query Q1 to Q3. To be specific, each query Q1, Q2, and
Q3 has 30, 40, and 60 LoC of Scala, respectively.

Real world applications using ML models. We also conducted
the evaluation on real world Spark applications implementing
recommendation system, and K-means clustering. As shown
in Figure 13, LAPUTA shows consistent tendency as explained
in previous experiments.

C. Throughput Overhead of LAPUTA

Then, we measured the throughput of each setting while
varying the number of concurrent requests.

22 SQL queries on TPC-H benchmark. In TPC-H benchmark,
we measured the throughput with 64 concurrent queries, and
LAPUTA shows almost comparable throughput as the baseline
Spark as shown in Figure 14. Overhead introduced by LAPUTA
is minimized as the time for those operations is overlapped
with the time for executing the other queries.

3 SQL queries on BDB benchmark. As shown in Figure 15-(a),
LAPUTA has decreased 38% throughput on average compared
to the baseline Spark setting. Especially, LAPUTA affects the
most on the query Q1, as it has larger overhead to serialize,
transfer, and deserialize the physical plan, while the time for
executing the plan is relatively small.

Real world applications using ML models. On the other
hand, LAPUTA shows comparable throughput performance
when it comes to the Spark applications using ML models
(i.e., Figure 15-(b)). This is because those applications take
longer time to execute the plans compared to the time for
LAPUTA’s logic.

D. Takeaway of LAPUTA Adoption Cost

Overall, LAPUTA imposes about 35% of latency and 25%
of throughput overheads on average, where the compartmen-
talization overhead occupies the majority. While there are
faster alternative compartmentalization mechanisms (e.g., in-
process isolation [53]), these are not compatible with our
threat model of cloud computing. Thus, LAPUTA employs
VM-based confidential computing, which is becoming the
standard approach to construct trusted computing environments
in clouds [11]. However, this overhead would still be acceptable
in areas that prioritize stronger security enforcement (e.g.,
medical and financial data sharing [31], [1]).
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VIII. DISCUSSION

Expressiveness of LAPUTA’s Policy Language. The expres-
siveness of LAPUTA’s policy language depends on i) the
expressiveness of regular expression (i.e., pattern), and ii) the
definition of symbols.

First, data owners cannot express policies that require
constructs outside regular languages [64]. While most policies
can be constructed within regular languages, there can be some
unusual policies. For example, LAPUTA does not allow the
expression of a plan that contains a number of Join followed
by the same number of Filter, as the pattern for such plans
(.., {s], 55 ...In >=1}) is not a regular language.

Second, LAPUTA cannot express a node that uses multiple
fields together without introducing false-positives. For example,
in order to express a Filter node using age and gender
together in its condition, data owners must define a symbol
s = (Filter,[{age, gender}]). However, such symbol has
false-positives as any Filter node using only age or gender can
also be matched as well as the correct nodes using both fields.
In addition, LAPUTA cannot match a node using user-defined
functions (UDFs) in its expression, as LAPUTA currently does
not support using UDF in defining the symbols. However,
we can resolve these limitations by improving the symbol
definition—i.e., explained more in §A.

Despite aforementioned limitations, LAPUTA significantly
improves over prior work by providing a way to express (and
categorize) fine-grained Spark physical plans, while prior work
is limited to pre-determined rules [37], [60], [61]. Using Qapla’s
linking policy [37] as an example, which prevents using both
fields (e.g., X, and Y) in the same plan, LAPUTA can enforce
such policy by allowing only the plans matching a pattern
(Msg)*|("sy)*, where s, and s, match any node using either
field X or Y. Policies of SparkAC [60] and GuardSpark++[61],



Table VI: Comparison of the expressiveness of LAPUTA’s policy against previous works. Single col.: can express a node using single
column—e.g., Filter(disease)? Multi cols.: can express a node using multiple columns—e.g., Project (name, disease)? Plan structure:
can express the structure of the paln—e.g., Join after Filter? Time related: can express queries over time—e.g., 10 queries in 1 second?
Any opsé&cols.: can express a node using any operator with any columns—e.g., Kmeans (name, any) ?

Capability Single col. Multi cols. Plan structure Time related Any ops&cols.
sparkAC [60] Yes No Limited No No
GuardSpark [61] Yes No Limited No No
Qapla [37] Yes Yes No No No
Datalawyer [52] Yes Yes No Yes No
LAPUTA Yes Yes Yes No Yes

which block using certain fields with a specific operator, can be
easily expressed in LAPUTA by defining the symbols. However,
those works cannot express the policy Pg in §III (i.e., filter
cannot be applied on a specific field if the table is joined),
while LAPUTA can.

Soundness and Completeness of LAPUTA’s Policy Checking.

For policies that can be expressed by data owners (explained in
the previous heading), LAPUTA’s policy checking mechanism
is both sound and complete. The intuition behind this lies in the
fact that a data owner’s policy can be precisely pattern-matched
into physical plans created by Spark. Therefore, by design, all
plans matching the patterns are caught by LAPUTA (i.e., no
false-negatives), and all plans not matching the patterns are
not caught by LAPUTA (i.e., no false-positives).

Complexity of Defining Policy. LAPUTA provides more
flexible way to define the policies at the expense of increased
complexity. In order to define the policies in LAPUTA, the data
owner has to understand the operators in Spark, the structure
of the physical plans, and the regular expression. However,
much of the complexity can be avoided by pre-determining
commonly used symbols and patterns (e.g., . * s, for matching
the plans projecting on X).

Potential Covert Channel and Mitigation. While LAPUTA
prevents direct data breaches, a malicious data user may
construct a covert channel on LAPUTA to leak the auxiliary
information of database. For example, joining after filtering on
a specific disease may leak the number of diagnosed patients
through timing side channel as the query latency depends on the
number of rows. In order to prevent such attacks, LAPUTA can
employ well-known side channel mitigation techniques such
as constant time execution [24], or oblivious computation [2].

IX. RELATED WORKS

Policy Enforcement in Data Analytics. Several previous
works have studied on enforcing policies while analyzing
database [52], [37], [60], [61]. While each work designs
different mechanisms to enforce the policies, we summarize
the high-level comparison of those works against LAPUTA in
Figure VI. In particular, we categorize the expressability of the
policies into the usage of single column (i.e., Single col.), the
usage of multiple columns simultaneously (i.e., Multi cols.),
structure of the plan (i.e., Plan structure), queries over time
(i.e., Time related), and the usage of any operators with any
columns (i.e., Any ops&cols.).
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SparkAC [60] and GuardSpark++ [61] design an access
control mechanism on Spark, which extends purpose based
access control [14]. Specifically, these works categorize each
operator based on the purpose (e.g., Filter and Scan for
retrieving data), and determine whether each column can be
used for each purpose (i.e., supporting Single col.). However,
they do not consider using multiple columns simultaneously
(i.e., not supporting Multi cols.), and matching plan structure.

Qapla [37] provides a predefined set of rules to filter out the
SQL queries. It supports expressing the usage of single column,
and multiple columns, but the available operators are limited—
e.g., it cannot prevent using multiple columns for only a specific
operator. Furthermore, it does not capture the structure of the
plan, limited in expressing complex requirements. We want to
note that LAPUTA can express all the rules defined in Qapla.

Datalaywer [52] designs a mechanism to express the policies
using SQL, which specifically supports defining the policies
related to time. However, it has limited support for expressing
the structure of the query plans and various operators.

Compartmentalization of Spark Engine. Similar to LAPUTA,
SparkConnect [19] compartmentalizes Spark applications as
well. The key difference is that SparkConnect is designed
to provide better modularity for development. As a result,
it does not securely enforce data usage policies on the
physical plans. Thus, SparkConnect still needs a mechanism
like LAPUTACHECKER to enforce the policies. Regarding the
compartment design, LAPUTA offers two additional security
benefits over SparkConnect, because it compartmentalizes the
application at a physical plan layer, whereas SparkConnect does
so at an earlier logical plan layer. First, LAPUTA minimizes
the TCB, as only the core Spark logic for executing a physical
plan runs in the enclave compartment. Second, LAPUTA offers
security-oriented maintenance, as most of the Spark logic (e.g.,
plan optimizer) can be updated without modifying the enclave’s
component, avoiding the risk of introducing bugs into security
critical logics.

Data Analytics on Confidential Computing. Opaque [66]
and OCQ [20] use confidential computing to protect the data
from malicious cloud providers. However, they do not design
policy enforcement mechanism, as they trust data users. On the
other hand, LAPUTA rearchitects the Spark applications, and
employs policy enforcement to protect the data from untrusted
data users. Ryoan [28] designs a system to protect distributed
applications on hardware enclaves, but it does not focus on



protecting data from malicious data users.

X. CONCLUSION

In this paper, we propose LAPUTA, a mechanism for secure
policy enforcement on Spark platform. LAPUTA provides a new
pattern matching based policy enforcement which uses fine-
grained policies on Spark physical plans. In addition, LAPUTA
designs confidential computing based compartmentalization
to protect the data analysis pipeline from malicious Spark
applications and cloud infrastructure. We implemented the
prototype of LAPUTA and demonstrated that LAPUTA correctly
enforces policies with moderate performance overhead.
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APPENDIX

This section provides a formal description of LAPUTA’S
policy language and explains how a Spark physical plan is
matched against the defined policies.

Formal Description of LAPUTA’s Policy Language. We
provide the preliminaries of LAPUTA’s policy language as
shown in Table VII. In order to define the policies in LAPUTA,
data owners first define the symbols as follows:

o Symbol s = (0, A) : (e), where o denotes a Spark logical
operator. For this, LAPUTA accepts the operators listed
in Table VIII or a wildcard operator (ALLop) introduced to
match any operators. The second argument (A) denotes a
set that takes a subset of all fields in table ¢ (i.e., F}) as
an element—i.e., A C P(F;)?, and an optional argument
(e) denotes an expression constructed from the fields used
in A.

Given the user-defined symbols s, ..., sy, the set of sym-

bols ¥ is defined as follows:

e Symbols ¥ = {s1,...,sny} U {a}, where a symbol s;
is defined by the data owner, and a hidden symbol « is
introduced to denote the nodes (in the Spark physical
plan) that are not denoted by any of the user-defined
symbols 51, ..., SN

Then, LAPUTA’s policy P is defined as a regular language
over the set of symbols X.

o Policy P = (t,r), where t denotes a table (i.e., leaf node
in the Spark physical plan), and r is a regular expression
built from a set of symbols 2.

LAPUTA’s Interface for Defining Symbols. However, it
is cumbersome to define the set A by manually adding all
available subsets. Thus, LAPUTA provides a function [-] to
help define the set A, which takes a set of fields as input and
returns all subsets of the given set except the empty set (i.e.,
available fields as described in §IV-A):

o [X]:={X'|X'C X A X' +# ¢}, which represents any
subset of X (C F}) except an empty set.

For example, [{gender,age}| contains any sets that
can be constructed using either gender or age (i.e.,
{{gender}, {age}, {gender, age}}). Using the function [-], us-
age of any fields can be expressed as [Fy], which is denoted as
a wildcard symbol ALL¢. However, using the function [-] alone
cannot express the inclusive sets that contain a given field as
well as any other fields (e.g., any subset of {name, gender, age}
that contains age). To this end, LAPUTA provides another
function [-,ALLg], which returns any subsets containing the
given fields:

o [X,ALL¢] := ALL¢ — [X €], which represents any subsets
that contain at least one field in X.

For example, [{age},ALLg| is ALLy — [{age}¢] = ALLg —
[{name, gender}], which excludes subsets not containing age

2P: powerset—i.e., set of all possible subsets
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Table VII: Preliminaries of LAPUTA’s policy language.

Note Definition Example

Filter

{{gender}, {age}. {gender, age}}
gender == MALE && age > 20

Spark logical operator (i.e., Table VIII)
Set of subsets of the fields in table
Optional expression

)

User-defined symbol
(ie., s = (0, A) : (€))
Hidden symbol

s1 = (Filter, {{age}}) : (age > 20)
sy = (Project, [{name, gender}|)

Table t; of name, gender, and age
F,;, = {name, gender, age}
.*81.%89

Py = (t1, .%51.%52)

Database table
F; denoting all fields of ¢
Regular expression of symbols

Policy (i.e., P = (t,7))

from entire subsets, thereby representing any subsets contain-
ing age.

Using the functions [-] and [-, ALLg], we can express com-
prehensive combinations of the available fields (e.g., using
either gender, age, or both together). However, we cannot
express conjunctive combinations that require both fields to be
included together (e.g., gender and age only). Nevertheless, we
can extend the functions based on set operations to express such
cases (e.g., {{gender, age}} is [{gender, age}| — [{gender}| —
[{age}]).

For the final optional argument e, LAPUTA accepts an
expression composed of Scala and Spark built-in functions,
using the fields specified in A. Thus, the argument e follows
the same syntax of Scala expressions that can be constructed
using arithmetic operations as well as other built-in functions
(e.g., gender MALE && age > 20). While current LAPUTA’s
implementation does not allow user-defined functions (UDFs),
it can be extended to incorporate the UDF implementation
into Spark physical plans and check them against the given
expression e.

LAPUTA’s Policy Checking Mechanism. LAPUTA checks
whether Spark physical plans (provided by data users) satisfy
the policies (given by the data owner). To this end, LAPUTA
i) splits the Spark physical plan (i.e., DAG of nodes) into
the sequences of nodes for each table (explained in §IV-B),
ii) converts each node in the sequence to the corresponding
symbol (thereby getting a sequence of symbols), and finally,
iii) matches the sequence of symbols against the given
regular expression (in policy) following the common regular
expression matching algorithms [49]. The first and last steps are
straightforward, thus, we next explain how LAPUTA converts
a node (in a plan) to the symbol (defined by data owner).

LAPUTA defines a many-to-one mapping function, which
converts a node (composed of Spark physical operator and
expressions using the table’s fields) to one of the user-defined
symbols (i.e., s; or o in X):

o A node n is converted to a symbol s; (= (0, A) : (e)), if
i. Physical operator in the node matches the logical
operator o as illustrated in Table VIIIL.
ii. Set of fields used in the node belongs to the set A
(i.e., collection of subsets of the fields).
iii. Expressions in the node match the optional expression
e as illustrated in Table IX.



Table VIII: A list of Spark logical operators that can be used to define a symbol.

Logical operators Physical operators Description

Except() ExceptExec Return rows in the first input table that are not in the second table.

Intersect() IntersectExec Return rows that are common in both input tables.

Union() UnionExec Combine rows from both input tables.

Limit(n) GloballjerutExec Return first n rows from input table.
LocalLimitExec

Offset(n) TakeOrderedAndProjectExec Skip first n rows and return the rest.

Tail(n) TailExec Return the last n rows.

Sample(n) SampleExec Randomly sample and return n rows.

Sort(e) SortExec Sort rows by expression e.

Filter(e) FilterExec Filter rows with condition e.

Expand(e) ExpandExec Generate multiple rows from the result of e.
BroadcastHashJoinExec

JoinCer, ez SortMergeJoinExec Join two tables by‘ e;==e,, where e; is constructed from the fields of

’ ShuffleHashJoinExec first table, and e, is constructed from the fields of second table.

BroadcastNestedLoopJoinExec

Aggregate(er,e;) gziiﬁggizgziz:z Aggregate rows after applying e, grouped by e;.

Window(e;,ez,e3) WindowExec Grouping multiple rows using e;, and apply ez after sorting by e.

Project(e;,ez,... ProjectExec Print rows after applying es,e,... to the table.

ALLgp

Any physical operators

Wildcard operator to match any Spark physical operators.

n denotes an integer. e denotes an expression using fields of the table.

Table IX: Expression matching rules depending on the operators.

Number of

Default

. Operators . Specified
expressions (no expression)
Except
Intersect
Union
0 Limit not applicable
Offset
Tail
Sample
Sort
1 Filter any expression only specified expression
Expand
Join™ only identity not allow specifying
2 Aggregate e;: only identity e;: only ident'iFy ‘
e;: any expression ez: only specified expression
e;: only identity e;: only identity
3 Window e;: only identity e,: only identity
e3: any expression  es: only specified expression
. applied only to fields
Many Project any expression pplie Y .
used in optional expression
ALLop any expression allow only specitying identity

*: Join accepts only one expression per joined table.

If a node does not satisfy the coversion criteria for any
defined symbol, LAPUTA returns a.

In some cases, multiple symbols may satisfy the conditions
for a given node—e.g., if s; = (Filter,ALLg), and sy =
(Filter, [{age}]), anode FilterExec(age > 20) matches both
symbols. Thus, LAPUTA provides priority rules as follows to
return only one symbol at a time:

« When multiple symbols match the conditions, the most
appropriate symbol is returned following
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i. Symbols with an exact operator take priority over the
symbols with ALLqp.

ii. Symbols with a smaller size of set A take priority over
the others.

iii. Symbols with an optional expression e take priority
over the others.

Thus, the node FilterExec(age > 20) in the above example
will be converted to the symbol s, as the symbol so has smaller
set A (i.e., {{age}}) than the symbol s; (i.e., ALLy = [Fy]).
LAPUTA aborts with an error if multiple symbols remain even
after applying these priority rules.
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