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Linux kernel is an attractive attack target
• Widely used

• Mobile devices, Servers, and IoT devices
• Increasing number of vulnerabilities and exploit techniques
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Protecting Access Control to Prevent Attacks
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PeTAL’s Data Flow Integrity
DFI is known to be performance-heavy
• Selectively protect access control-related data
• Leverage hardware extensions : ARM MTE for objects, PAC for pointers
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Key questions:

1. What should be protected?
2. How should they be protected?

Kernel objects



Access Control System
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Policy
: Data defining the allowed access

Enforcement
: Code enforcing the access control

Resource
: Data being protected



Access Control System in the Linux Kernel
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Kernel open(‘/home/attacker/my_file’, write)

DAC permission check (cred, inode, mode)

uid: attacker

struct 
task_struct

cred
struct cred

owner: attacker
mode : rw / r-

struct inode

mode
mapping

struct filestruct 
task_struct

files fdt

struct
files_struct

fd

struct
fdtable

↳ success: Grant file access
by creating a file descriptor & return fd

→ fdUser

Policy
: Data defining the allowed access

Enforcement
: Code enforcing the access control

Resource
: Data being protected

Policy
: cred, uid, owner, mode

Enforcement
: DAC permission check

Resource
: files, fdt, fd, mode, mapping



Access Control System in the Linux Kernel
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Kernel open(‘/etc/shadow’, write)

DAC permission check (cred, inode, mode)

uid: attacker

struct 
task_struct

cred
struct cred

owner: root
mode : rw / --

struct inode

↳ fail: return –EACCES.

→ -EACCESUser

Policy
: cred, uid, owner, mode

Enforcement
: DAC permission check

Resource
: files, fdt, fd, mode, mapping



↳ passed: open file.

Attack 1: Corrupting Policy
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↳ passed: open file.
DAC permission check (cred, inode, mode)
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Attack 2: Bypassing Enforcement & Corrupting Resource
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Kernel
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PeTAL’s Access Control Integrity

Policy Integrity
: Ensure policy is not corrupted

Complete Enforcement
: Ensure enforcement is 
always enforced when 
resource is accessed
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1. What should be protected?
Policy should be protected

Resource should also be protected

DAC permission check (cred, inode, mode)
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↳ passed: open file.

Collecting Policy and Resource
from user interfaces
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↳ passed: open file.

Collecting Policy and Resource
from user interfaces
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PeTAL’s Data Flow Integrity
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2. How should they be protected?

• Selectively protect access control-related data
• Leverage hardware extensions : ARM MTE for objects, PAC for pointers



ARM MTE and PAC
Memory Tagging Extensions (MTE)
• Memory object protection
• Hardware memory tagging/tag checking
• Dedicated tag storage in physical memory
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• Hardware pointer signing/authentication
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Protecting Objects with ARM MTE
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Protecting Pointers with ARM PAC
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Complementary Relationship of MTE and PAC

MTE Tag Reuse
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Complementary Relationship of MTE and PAC

PAC Reuse (Temporal)
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PeTAL Implementation
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Performance Evaluation

• Evaluation setup
• Samsung Galaxy S22 – supports PAC and MTE*

* MTE was enabled with the assistance of Samsung Electronics

• Android kernel 5.10.136

• Kernel workloads
• LMBench 1.18x (MTE async) / 1.32x (MTE sync)

• User workloads
• Nbench: 1.00x / LevelDB 1.03x / Apache httpd: 1.04x (MTE sync)

• Security evaluations in the paper
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Summary

• PeTAL defines Access Control integrity for the Linux kernel.

• PeTAL proposes a novel way to identify protection targets 
leveraging the kernel’s user interfaces.

• PeTAL’s DFI solution based on ARM MTE and PAC
demonstrates acceptable performance overhead.
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Thank you!
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Threat Model and Assumptions
• Hardware

AArch64, ARM MTE PAC

• Kernel
• State-of-the-art self-protections (e.g., ASLR, NX/DEP, SMAP, CFI)
• 1+ Memory coruption vulnerabilities

• Attack vector
• Memory corruption attack through vulnerable system calls
• Corrupting access control policies/resources

• Out of scope
• Access control system implementation error
• Page allocator error (e.g., GPU driver vulnerabilities)
• In-kernel executions (e.g., eBPF)
• Hardware side-channel attacks (e.g., Spectre, PACMAN, TikTag)
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Correctness of the Static Analyses

• Static Taint Analysis
• Goal: Collect kernel objects/pointers used as policy or resource from 

the user intefaces
• Evaluation: Manual inspection

• 3 false positives due to complex data flows
• No false negatives

• Coarse-grained Points-to Analysis
• Goal: Classify instructions to enforce the DFI

• Privileged / Non-privileged / Mixed
• Evaluation: Emperical verification

• The PeTAL-hardened kernel worked on QEMU and the Galaxy device
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