
PeTAL: Ensuring Access Control Integrity
against Data-only Attacks on Linux

Juhee Kim, Jinbum Park, Yoochan Lee,
Chengyu Song, Taesoo Kim, Byoungyoung Lee

Linux kernel is an attractive attack target
• Widely used

• Mobile devices, Servers, and IoT devices
• Increasing number of vulnerabilities and exploit techniques

2CVEdetails.com

Kernel

Access control-related
kernel data

Attacker

modprobe_path

struct cred

struct file

Kernel Privilege Escalation Attacks

3

/etc/shadow

File File
/home/attacker/

my_file

Access control

Kernel

Privilege
: Low

/etc/shadow

File File
/home/attacker/

my_file

Access control

Kernel

Attacker

Privilege
: High

Vulnerable
SYSCALLs

modprobe_path

struct cred

struct file

Memory
Corruption

Attacker

Protecting Access Control to Prevent Attacks

4

File File
/home/attacker/

my_file

Access control

Kernel

Attacker

Privilege
: Low

Kernel

struct cred

struct file

modprobe_path

Access control-related
kernel data

Vulnerable
SYSCALLs

Attacker

/etc/shadow

Attacker

Privilege
: Low

/etc/shadow

File File
/home/attacker/

my_file

Kernel

Access control

PeTAL’s Data Flow Integrity
DFI is known to be performance-heavy
• Selectively protect access control-related data
• Leverage hardware extensions : ARM MTE for objects, PAC for pointers

5

P PAC

T MTE

P
P

P
P

P P

T
T

T
TT

T

Key questions:

1. What should be protected?
2. How should they be protected?

Kernel objects

Access Control System

6

Policy
: Data defining the allowed access

Enforcement
: Code enforcing the access control

Resource
: Data being protected

Access Control System in the Linux Kernel

7

Kernel open(‘/home/attacker/my_file’, write)

DAC permission check (cred, inode, mode)

uid: attacker

struct
task_struct

cred
struct cred

owner: attacker
mode : rw / r-

struct inode

mode
mapping

struct filestruct
task_struct

files fdt

struct
files_struct

fd

struct
fdtable

↳ success: Grant file access
by creating a file descriptor & return fd

→ fdUser

Policy
: Data defining the allowed access

Enforcement
: Code enforcing the access control

Resource
: Data being protected

Policy
: cred, uid, owner, mode

Enforcement
: DAC permission check

Resource
: files, fdt, fd, mode, mapping

Access Control System in the Linux Kernel

8

Kernel open(‘/etc/shadow’, write)

DAC permission check (cred, inode, mode)

uid: attacker

struct
task_struct

cred
struct cred

owner: root
mode : rw / --

struct inode

↳ fail: return –EACCES.

→ -EACCESUser

Policy
: cred, uid, owner, mode

Enforcement
: DAC permission check

Resource
: files, fdt, fd, mode, mapping

↳ passed: open file.

Attack 1: Corrupting Policy

9

Kernel

DAC permission check (cred, inode, mode)

open('/etc/shadow’ , write)

↳ success: Grant file access
by creating a file descriptor & return fd

uid

struct
task_struct

cred
struct cred

owner
mode

struct inode

Vulnerable SYSCALLs

mode
mapping

struct filestruct
task_struct

files fdt

struct
files_struct

fd

struct
fdtable

→ fdAttacker

Policy
: cred, uid, owner, mode

Enforcement
: DAC permission check

Resource
: files, fdt, fd, mode, mapping

↳ passed: open file.
DAC permission check (cred, inode, mode)

uid

struct
task_struct

cred
struct cred

owner
mode

struct inode

Attack 2: Bypassing Enforcement & Corrupting Resource

10

Kernel

mode
mapping

struct file
struct

task_struct

files fdt

struct
files_struct

fd

struct
fdtable

Bypass permission check
↳ Grant file access by forging file descriptor

Attacker

Policy
: cred, uid, owner, mode

Enforcement
: DAC permission check

Resource
: files, fdt, fd, mode, mapping

Vulnerable SYSCALLs
→ fd

PeTAL’s Access Control Integrity

Policy Integrity
: Ensure policy is not corrupted

Complete Enforcement
: Ensure enforcement is
always enforced when
resource is accessed

uid
capabilities

struct
task_struct

cred
struct cred

owner
mode

struct inode

11

1. What should be protected?
Policy should be protected

Resource should also be protected

DAC permission check (cred, inode, mode)

mode
mapping

struct filestruct
task_struct

files fdt

struct
files_struct

fd

struct
fdtable

↳ passed: open file.

Collecting Policy and Resource
from user interfaces

12

Resource

Deny

Kernel

User

User interface
handler

System calls e.g., SYSCALL_open()
Pseudo filesystems e.g., /sys/kernel/modeprobe_path

Allow
Error code

Access Control

↳ passed: open file.

Collecting Policy and Resource
from user interfaces

13

Enforcement
Permission check

Policy

Kernel

User

Static Taint
Analysis

System calls e.g., SYSCALL_open()
Pseudo filesystems e.g., /sys/kernel/modeprobe_path

Error code

Fail

Resource

Success

copy_to/from_user()

raw data

Static Taint
Analysis

PeTAL’s Data Flow Integrity

14

P PAC

T MTE

current
struct task_struct

cred

struct inode
inode_hashtable

struct
files_struct

fdt fd

struct
fdtable

files

i_mode
i_uid

struct cred

uid
struct file

f_mode

P

P
P
P

P P

T

T

T

TT

T

Heap object

Pointer

Global Variable

2. How should they be protected?

• Selectively protect access control-related data
• Leverage hardware extensions : ARM MTE for objects, PAC for pointers

ARM MTE and PAC
Memory Tagging Extensions (MTE)
• Memory object protection
• Hardware memory tagging/tag checking
• Dedicated tag storage in physical memory

15

obj2

&obj1T1

Pointer

obj1

obj3

&obj2T2

&obj2T3

T1

T2

T3

ObjectAccess

Tag Check Fault

Pointer Authentication Code (PAC)
• Pointer protection
• Hardware pointer signing/authentication
• PAC key + PAC context + Pointer value
à PAC Signiture

&obj

Pointer
Memory

&obj

✓
Sign

Store

&other_obj

&other_obj Load

Authentication Failure

Auth𝙓

PAC
Context

PAC

Protecting Objects with ARM MTE

16

obj2

&obj1

Privileged Pointer

obj1

obj3

&obj2

&obj2

T1

T2

T3

Privileged object Non-privileged
Pointer

obj2

&obj1 obj1

obj3

&obj2

&obj2

T0

T0

T0

Non-privileged
object

Enforce Pointer’s tag on access

Fixed Tag (Tag 0)
Enforce tag 0 on access

Privileged Objects:
Objects that contain policy, resource, or

their pointer

Non-privileged Objects:
Other objects

T1

T2

T3

T0

T0

T0

Protecting Pointers with ARM PAC

17

&nonpriv_obj

Non-privileged Pointer
Memory

&nonpriv_obj

&nonpriv_obj

?

?

-

Store

Load

PAC Sign/Authentication No PAC Sign/Authentication

Privileged Pointers:
Pointers to privileged objects

Non-privileged Pointers:
Other pointers

&priv_obj

&priv_obj

Privileged Pointer
Memory

&priv_obj

✓

✓

Sign
Store

Load

Auth

Arbitrary
read/write

&priv_obj

Authentication Failure

PAC

Pointer storage address as PAC Context
à Bind PAC to the stored address

𝙓

Complementary Relationship of MTE and PAC

MTE Tag Reuse

18

&priv1T1

Object1 Object2

&priv2T2

Leak pointer

&priv1T1

&priv1T1

Corrupt pointer

Prevent with PAC
: PAC is bound to the pointer stored address

&priv1T1

Object1 Object2

&priv2T2PAC1

Authentication
Failure

Leak pointer

&priv1T1 PAC1

PAC2
&priv1T1

Corrupt pointer

PAC1

No Tag Check
Fault

Use ptr Use ptr

Complementary Relationship of MTE and PAC

PAC Reuse (Temporal)

19

Prevent with MTE

Object1

&obj1

Object2&obj2

Corrupt
pointer

Leak Pointer

Freed

&priv1

&priv1
PAC

&priv2&priv1
PAC

&obj1

Object2
&obj2

Corrupt
pointer

Leak Pointer

&priv1
PAC

&priv2
PAC

T4

T3 T4

Tag check fault
!=T3 T4No Authentication

Failure

Use ptr

PeTAL Implementation

20

Clang/LLVM IR Pass

Linux kernel
source code vmlinux.bc

wllvm

Priv/Non-priv Obj access
Priv/Non-priv Ptr access

Privileged
Objects

Privileged
Pointers

Struct Types, GV Names

PeX - indcall resolution

PeTAL-
hardened

Kernel

PeTAL

Inter-procedural
Points-to Analysis

Data Flow Integrity
Instrumentation

AArch64

PACMTE

Static Taint Analysis

User Interfaces
Syscalls Pseudo-fs

Performance Evaluation

• Evaluation setup
• Samsung Galaxy S22 – supports PAC and MTE*

* MTE was enabled with the assistance of Samsung Electronics

• Android kernel 5.10.136

• Kernel workloads
• LMBench 1.18x (MTE async) / 1.32x (MTE sync)

• User workloads
• Nbench: 1.00x / LevelDB 1.03x / Apache httpd: 1.04x (MTE sync)

• Security evaluations in the paper

21

Summary

• PeTAL defines Access Control integrity for the Linux kernel.

• PeTAL proposes a novel way to identify protection targets
leveraging the kernel’s user interfaces.

• PeTAL’s DFI solution based on ARM MTE and PAC
demonstrates acceptable performance overhead.

22

Thank you!

23

Threat Model and Assumptions
• Hardware

AArch64, ARM MTE PAC

• Kernel
• State-of-the-art self-protections (e.g., ASLR, NX/DEP, SMAP, CFI)
• 1+ Memory coruption vulnerabilities

• Attack vector
• Memory corruption attack through vulnerable system calls
• Corrupting access control policies/resources

• Out of scope
• Access control system implementation error
• Page allocator error (e.g., GPU driver vulnerabilities)
• In-kernel executions (e.g., eBPF)
• Hardware side-channel attacks (e.g., Spectre, PACMAN, TikTag)

24

Correctness of the Static Analyses

• Static Taint Analysis
• Goal: Collect kernel objects/pointers used as policy or resource from

the user intefaces
• Evaluation: Manual inspection

• 3 false positives due to complex data flows
• No false negatives

• Coarse-grained Points-to Analysis
• Goal: Classify instructions to enforce the DFI

• Privileged / Non-privileged / Mixed
• Evaluation: Emperical verification

• The PeTAL-hardened kernel worked on QEMU and the Galaxy device
25

